
Springer Nature 2021 LATEX template

Convex and Concave Envelopes of Artificial

Neural Network Activation Functions for

Deterministic Global Optimization†

Matthew E. Wilhelm, Chenyu Wang and Matthew D. Stuber*

Process Systems and Operations Research Laboratory, Department
of Chemical & Biomolecular Engineering, University of Connecticut,

191 Auditorium Road, Unit 3222, Storrs, 06269, CT, USA.

*Corresponding author(s). E-mail(s): stuber@alum.mit.edu;

Contributing authors: matthew.wilhelm@uconn.edu;
chenyu.wang@uconn.edu;

Abstract

In this work, we present general methods to construct convex/concave relax-
ations of the activation functions that are commonly chosen for artificial
neural networks (ANNs). The choice of these functions is often informed
by both broader modeling considerations balanced with a need for high
computational performance. The direct application of factorable program-
ming techniques to compute bounds and convex/concave relaxations of
such functions often lead to weak enclosures due to the dependency prob-
lem. Moreover, the piecewise formulation that defines several popular acti-
vation functions, prevents the computation of convex/concave relaxations
as they violate the factorable function requirement. To improve the perfor-
mance of relaxations of ANNs for deterministic global optimization appli-
cations, this study presents the development of a library of envelopes of
the thoroughly studied rectifier-type and sigmoid activation functions, in
addition to the novel self-gated sigmoid-weighted linear unit (SiLU) and
Gaussian error linear unit (GELU) activation functions. We demonstrate

†Author’s final accepted version. Published version: Wilhelm, M.E., Wang, C., and M.D.
Stuber. Convex and Concave Envelopes of Artificial Neural Network Activation Func-
tions for Deterministic Global Optimization. Journal of Global Optimization. (2022).
doi:10.1007/s10898-022-01228-x

1

https://doi.org/10.1007/s10898-022-01228-x

Springer Nature 2021 LATEX template

2

that the envelopes of activation functions directly lead to tighter relax-
ations of ANNs on their input domain. In turn, these improvements trans-
late to a dramatic reduction in CPU runtime required for solving optimiza-
tion problems involving ANN models to epsilon-global optimality. We fur-
ther demonstrate that the factorable programming approach leads to supe-
rior computational performance over alternative state-of-the-art approaches.

Keywords: artificial neural networks, machine learning, deterministic global
optimization, factorable programming, McCormick relaxations, envelopes, Julia
programming

1 Introduction

Machine learning and general surrogate modeling approaches provide a means to
describe physical phenomena when accurate first-principles models (FPMs) may
lead to intractable formulations and when field-specific knowledge may not be
adequate to formulate accurate FPMs [1]. These approaches make use of either
real-world data or computationally generated datasets to train data-driven mod-
els (DDMs) that adequately approximate the underlying system behavior. In many
cases, the DDMs primarily serve to reduce intractable models into forms that
allow for subsequent analysis, such as process design, sensitivity analysis, or an
assessment of controllability. Optimization methods are often embedded in each
of these tasks, making the deterministic optimization of nonconvex models, which
embed these DDMs, a pursuit of interest.

Numerous data-driven modeling approaches have been applied to engineered
systems that include: artificial neural networks (ANNs) [2, 3], Gaussian (Kriging)
process models [4–6], and support vector machines [7]. ANNs, in particular, have
seen a greatly increased usage with the advent of widely-accessible and highly-
capable software tools, such as Tensorflow [8] and Pytorch [9]. These universal
approximators represent one class of DDMs that has seen an abundance of usage
in recent decades with optimization-based applications ranging from synthesis
of biodiesel processes [10], selection of optimal fermentation media [11], optimal
control of pressure swing absorption processes [12], design of cross-flow filtration
systems [13], and many others [14–16]. More recently, there has been an emer-
gence of interest in applying deep ANNs (usually defined as ANNs with four or
more hidden layers in contrast to shallow ANNs that have a single hidden layer)
to process system engineering applications as well as standard classification and
ranking tasks. One recent example consists of the use of deep ANNs to predict
multiphase flow characteristics in a pipe [17]. Renewed interest in deep ANNs
has resulted in the exploration of novel ANN structures that may provide better
performing models (lower computational cost, improved robustness, and better
predictive value). Associated with these investigations are several efforts [18–21] to
uncover superior activation functions to be used in the more complex structures

Springer Nature 2021 LATEX template

1 INTRODUCTION 3

that characterize deep ANNs that have the potential to reduce computational time
and improve robustness relative to the state-of-the-art ReLU activation function.

Approaches that solve optimization problems deterministically with trained
ANNs embedded have largely been limited to ReLU network-based models. Full-
space formulations may exploit the equivalency of ReLU networks to mixed-
integer linear programs (MILP) [22–25] or adapt ReLU network representations
of piecewise linear functions to perform adaptive partitioning and domain tight-
ening [26]. The resulting problems are then solved using state-of-the-art MILP
(or MINLP solvers if nonlinear terms are present). Despite recent developments
enabling deterministic global optimization of certain ANNs for process systems
engineering applications [3, 27], there still remains a need for theoretical devel-
opments that enable support for a broader library of activation functions and
additional families of ANNs. Namely, trained neural networks incorporating these
activation functions may be described by systems of equations and, in turn,
embedded in a mathematical program. Unfortunately, most activation functions
embedded in this manner are nonlinear and exhibit significant nonconvexities
that lead to difficulties in solving the resulting optimization formulation.

Explicit consideration of activation functions may lead to tighter relaxations
of nonconvex optimization problems involving ANNs. The availability of tighter
relaxations remains desirable as their use may greatly accelerate the convergence
of the branch-and-bound (B&B) algorithm that underlies all commercially avail-
able state-of-the-art deterministic global optimizers. Support for more general
ANNs is also desirable for two other important reasons. First, it increases the vari-
ety of ANN model forms that may be developed for use in global optimization
applications. Second, it allows for the integration of a broader family of legacy
models built for general predictive purposes. These may be difficult to adapt
to alternative surrogate model formulations due to domain-specific modeling
considerations or potential logistical hurdles such as the unavailability of legacy
training data. As such, methods that are directly applicable to these models are
desirable. In this paper, we make the following novel contributions that serve to
address these outstanding issues:

1. We discuss ANN structures of current research interest and reduced-space
reformulations for specialized ANN structures that may participate in global
optimization formulations (the reader is directed to Section 4 for a sum-
mary of reduced-space formulations). In particular, we highlight a collection
of activation functions without standard factorable representations using
software libraries and categorize these according to convexity properties.

2. We derive novel convex/concave envelopes for the increasingly popular
implicitly regularizing activation functions sigmoid-weighted linear unit
(SiLU) and Gaussian error linear unit (GELU).

3. We analyze the convexity properties of numerous common activation func-
tions and highlight how naïve McCormick relaxations lead to overestimation

Springer Nature 2021 LATEX template

4

of convex/concave relaxations due to the dependency problem (i.e., overes-
timation inherent to set-valued arithmetic due to the inability to recognize
multiple occurrences of the same variable in a given expression [28, 29]).

4. We illustrate that the use of envelopes for common/popular activation func-
tions leads to increased performance relative to a naïve application of com-
position rules originating from Garth McCormick’s foundational work [30]
using a randomly generated benchmark set.

These contributions ultimately lead to faster solution times associated with
reduced-space optimization methods for a wide variety of ANN-based machine
learning models. Moreover, our contributions allow for an extended library of acti-
vation functions to be utilized in nonlinear programs (NLPs) that must be solved
with a certificate of global optimality.

In this paper, we present new developments on the relaxation of activation
functions common in recent ANN-based models. In Section 2, we detail the math-
ematical conventions used in the paper while briefly reviewing relevant results
in convex analysis and machine learning. Subsequently, in Section 3, we develop
and analyze convex and concave relaxations of several activation functions that
have become increasingly prevalent in broader machine learning applications.
In Section 4, we describe full-space and reduced-space formulations for global
optimization problems; we then proceed to detail how ANNs may readily be incor-
porated into either formulation. In Section 5, we present the numerical results
arising from a randomly generated benchmark set that illustrate the performance
improvements readily achievable using these novel envelopes. Lastly, in Section
6, we reflect on current technical challenges and suggest future directions for
subsequent research.

2 Mathematical Background

2.1 Interval Arithmetic

Scalar quantities are represented as lower-case letters (e.g., a) and vectors are
denoted by boldface lower-case letters (e.g., a). Let A = [aL ,aU] represent an n-
dimensional real interval vector that is a nonempty compact set defined as A =
{a ∈ Rn : aL ≤ a ≤ aU } with aL and aU the lower and upper bounds of the interval,
respectively, and Ai representing the i -th component of the vector A. Addition-
ally, let IRn be the set of all n-dimensional real intervals and for any D ⊂ Rn ,
ID = {X ∈ IRn : X ⊂ D} is the set of all interval subsets of D . A set B n is defined as
the Cartesian product B n ≡ B ×B ×·· ·×B for B ⊂ R. Further, let the diameter of a
scalar-valued interval, X , be defined as diam(X) = xU −xL and the radius be given
by rad(X) = diam(X)/2.

Springer Nature 2021 LATEX template

2 MATHEMATICAL BACKGROUND 5

2.2 Convex and Concave Relaxations

Definition 1 (Univariate Intrinsic Function [31]). The function u : B ⊂ R→ R is a
univariate intrinsic function if, for any A ∈ IB , the following are known and can be
evaluated computationally:

1. an interval extension of u on A that is an inclusion function of u on A,
2. a concave relaxation of u on A,
3. a convex relaxation of u on A.

Definition 2 (Factorable Function [31]). A function F : Z ⊂Rn →R is factorable if
it can be expressed in terms of a finite number of factors v1, . . . , vm , such that given
z ∈ Z , vi = zi for i = 1, . . . ,n, and vk is defined for n ≤ k ≤ m as either

1. vk = vi + v j , with, i , j < k, or
2. vk = vi v j , with, i , j < k, or
3. vk = uk (vi), with, i < k, where uk : Bk →R is a univariate intrinsic function,

and F (z) = vm(z), for every z ∈ Z . A vector-valued function is factorable if each of
its components are factorable functions.

Definition 3 (Cumulative Mapping [31]). Let the cumulative mapping vk be the
mapping vk : Z → R defined for each z ∈ Z by the value vk (z) when the factors of
F are computed recursively, as per Definition 2, beginning from z.

Definition 4 (Convex and Concave Relaxations [32]). Given a convex set Z ⊂ Rn

and a function f : Z → R, a convex function f cv : Z → R is a convex relaxation of
f on Z if f cv (z) ≤ f (z) for every z ∈ Z . A concave function f cc : Z →R is a concave
relaxation of f on Z if f cc (z) ≥ f (z) for every z ∈ Z .

Note that this definition involves scalar functions. However, convex and con-
cave relaxations of vector valued functions f : Z → Rn are defined by applying the
above inequalities componentwise [33].

Definition 5 (Convex and Concave Envelope [34]). Let f : S → R where S ⊂ Rn is
a nonempty convex set. The convex envelope of f on S is the convex relaxation
f cv,env : S → R such that f cv (x) ≤ f cv,env (x) holds for all x ∈ S and every convex
relaxation f cv of f on S. Similarly, the concave envelope of f on S is the concave
relaxation f cc,env : S →R such that f cc (x) ≥ f cc,env (x) holds for all x ∈ S and every
concave relaxation f cc of f on S.

Definition 6 (McCormick Relaxation [32]). Relaxations of factorable functions
that are formed from the recursive application of univariate composition, binary
multiplication, and binary addition from convex and concave relaxations of uni-
variate intrinsic functions, without the introduction of auxiliary variables, are
referred to as McCormick relaxations.

Springer Nature 2021 LATEX template

6 2.3 Artificial Neural Networks

Proposition 1 (Univariate McCormick Composition Rule [32]). Let Z ⊂ Rn and
X ⊂R be nonempty convex sets. Consider the composite function w =φ◦q where
w : Z → R is continuous, φ : X → R, let q(Z) ⊂ X . Let qcv : Z → R and qcc : Z → R

be convex and concave relaxations of q on Z , respectively. Let φcv : X → R and
φcc : X →R be convex and concave relaxations of φ on X , respectively. Let ξ∗min ∈ X
be a point at which φcv attains its infimum on X and let ξ∗max ∈ X be a point at
which φcc attains its supremum on X . Then the convex and concave relaxations
are, respectively, given by

wcv : Z →R : z 7→φcv (mid(qcv (z), qcc (z),ξ∗min)) (1)

wcc : Z →R : z 7→φcc (mid(qcv (z), qcc (z),ξ∗max)). (2)

In the above, the mid(· , · , ·) function takes the median value of its three argu-
ments. Generally, the application of Proposition 1 requires the use of closed-form
expressions, which are available for all standard operations (e.g. +, ×, exp, log),
to determine the values of ξ∗max and ξ∗min in conjunction with defined forms of
the relaxations φcv and φcc . Convex and concave envelopes of univariate intrinsic
functions (such as exp and tanh) are available in existing relaxation libraries (e.g.
[35]) and are used throughout this paper for calculations unless otherwise speci-
fied. In the case of “×", the rules presented in [32] are used for the calculation of
relaxations and the max operator is addressed using the standard reformulation
max(x, y) = (x + y +|x − y |)/2.

2.3 Artificial Neural Networks

One of the most common ANN structures is that of the multilayer perceptron
(MLP). The MLP is a class of feedforward ANNs that consists of a directed acyclic
graph (DAG) containing n layers enumerated k = 1, . . . ,n. The first layer consists
of inputs to the MLP. The subsequent k = 2, . . . ,n −1 layers are the hidden layers,
with k = n the output layer. The number of neurons in layer k is denoted m(k).

Let a(k) ∈Rm(k)
be the output vector of layer k. Accordingly, a(1) is the input vector

and a(n) is the output vector of the MLP. For layers k ∈ {2, . . . ,n}, the vector a(k) is
defined componentwise by

a(k)
i = f (k)

((
w(k−1)

i

)T
a(k−1) +b(k−1)

i

)
, i = 1, . . . ,m(k), (3)

where f (k) : R → R are activation functions, W(k−1) =
[

w(k−1)
1 w(k−1)

2 · · · w(k−1)
m(k)

]
∈

Rm(k)×m(k−1)
is a weight matrix, and b(k−1) ∈Rm(k)

is a bias vector. For ease of intro-

duction, we define o : Rm(1) → Rm(n)
to represent the input-output function for a

generic DDM. In the case of an MLP, we have a(n) = o(a(1)). A depiction of this type
of network is provided in Figure 1. When a feedforward ANN is trained, the weight
matrices and bias vectors become optimization variables, while the values of the

Springer Nature 2021 LATEX template

2 MATHEMATICAL BACKGROUND 7

input vector a(1)
i for i = 1, . . . ,m(1), are treated as parameters. When a trained feed-

forward ANN is embedded in an optimization problem, the weight matrices and
bias vectors are fixed to constant parameter values.

Input Layer

Hidden Layer n-2

Output Layer

Hidden Layer 1

11

2

Input 1 Output 1

2

1

2 2Input 2

Input

Output 2

Output

1

Fig. 1 The directed acyclic graph representation of a multilayer perceptron with n layers. The input
and output layers are the first (k = 1) and n-th (k = n) layers, respectively. The hidden layers are labeled
k = 2 to k = n − 1. Note that the multilayer perceptron is a fully-connected network in which each
neuron in layer k −1 is connected to all neurons in the subsequent layer k.

It should be noted that while the MLP structure may be easily decomposed into
a factorable representation, many ANNs of active interest may not. For example,
residual networks and recurrent neural networks have analogous continuous-
time representations [36–39]. These continuous-time representations are often
desirable as they may be evaluated using state-of-the-art ODE integrators, and
in turn circumvent the need to search for an optimal number of hidden lay-
ers. This has motivated recent interest in neural-ordinary differential equations
[40, 41]. These models can be addressed by exploiting specialized continuous-time
relaxation methods for ODEs [42–45]. Alternatively, deep ANNs with an implicit
representation [46] may require the solution of nonlinear systems via fixed-point
methods to evaluate the neural network outputs and specialized relaxation meth-
ods for fixed-point methods need to be applied [33]. However, in both cases,
using tighter relaxations of the activation functions participating in the over-
all network will result in tighter relaxations of the overall network. Nonetheless,
the methods described herein will be applicable to generalized feedforward neu-
ral networks [47], including deep feedforward networks [48], extreme learning
machines [49], discrete recurrent neural networks [50], and deep residual net-
works [51] as activation functions represent a key component of each of these
networks.

Springer Nature 2021 LATEX template

8

3 Relaxations of Activation Functions

To solve NLPs with a certificate of global optimality, the use of a deterministic
global optimization method (e.g., B&B) is required [52]. These methods typically
require that convex (and concave) relaxations of the participating nonconvex
expressions may be readily computed. After the seminal work of McCormick [30],
there has been a significant effort to develop libraries of relaxations of com-
mon mathematical expressions and intrinsic functions that are often encountered
in common mathematical models and relevant optimization problems. In this
section, we further contribute to these efforts by developing convex and concave
relaxations of common activation functions encountered in ANNs.

Previous work has focused on ANNs with a hyperbolic tangent [3, 27, 53] acti-
vation function. It was noted that increasing ANN depth is undesirable when
holding the number of neurons fixed, due to the overestimation of relaxations
[3]. In this section, we review relaxations of several common activation func-
tions that have been developed more recently, with special attention paid to the
Gaussian error linear unit (GELU) and the sigmoid-weighted linear unit (SiLU)
functions. Many of these activation functions are known to perform better in a
deep network configuration, specifically by either reducing the training time for
equivalent network structures or by enabling networks with fewer terms that yield
a more accurate fit to the data. As a consequence of using these activation func-
tions, the number of nonconvex expressions that participate in a DDM may be
reduced while maintaining the desired accuracy. This can lead to more tractable
formulations of otherwise prohibitively expensive optimization problems.

We also note that the construction of relaxations of activation functions using
standard McCormick libraries (e.g., [35, 54]) may often be inadequate. For exam-
ple, in some cases, the piecewise definitions cannot be readily implemented via
overloading approaches, and in other cases, the direct application of overload-
ing approaches leads to weak relaxations. Note that this applicability to broader
classes of ANNs is desirable, as it allows legacy models, built for long-term predic-
tion, to be readily embedded in process simulations for optimization-based design
tasks. We begin this section with a discussion of common families of activation
functions and their associated convex/concave envelopes. Finally, we derive the
envelopes for the recent SiLU and GELU activation functions that will be utilized
in the case studies in this paper.

3.1 Convex Activation Functions

One of the most ubiquitous activation functions currently used in machine learn-
ing is that of the Rectified Linear Unit (ReLU), f : R → R : x 7→ max(x,0). The
development of the ReLU represented a significant breakthrough in the super-
vised training of deep ANNs [55], and has since become the standard activation
function used in deep learning. The simplicity of the ReLU in concert with the lack
of any vanishing gradient issue, wherein nonlinearities lead to near-singular val-
ues of the input-output Jacobian, have often been noted as distinct advantages of

Springer Nature 2021 LATEX template

3 RELAXATIONS OF ACTIVATION FUNCTIONS 9

this activation function. Additionally, networks comprised of ReLU functions may
be readily modeled as MILPs [22] and solved using well-established MILP solvers.
One proposed alteration to the ReLU resulted in the development of the expo-
nential linear unit (ELU) which allows for negative outputs and avoids the “dying"
ReLU problem — when ReLU neurons participating in a network only output 0 for
any input during network training [56] — at the cost of significantly more com-
plex arithmetic operations [57]. A scaled ELU was also proposed that avoids both
vanishing and exploding gradient problems and incorporates an internal normal-
ization routine [58]. Many of these newly proposed activation functions belong to
a family of monotonically increasing convex functions.

The convex envelope of a univariate scalar-valued convex function f on a com-
pact set [a,b] is simply the function itself. Whereas, its concave envelope is the
affine function that joins the end points f (a) and f (b) [30]. Relaxations of compo-
sitions involving these terms can be computed using the Univariate McCormick
Composition Theorem, Proposition 1 herein. While some activation functions
such as ReLU have exact convex/concave relaxations when computed via naïve
McCormick composition [30, 32], others are defined as compositions of multiple
algebraic expressions that lead to overestimation due to the well-known depen-
dency problem. Functions such as ReLU consist of only one expression and are
already included in McCormick relaxation software libraries [35, 54, 59]. Other
activation functions such as Maxsig, Maxtanh, and Softplus have relaxations that
are weaker than their envelopes when computed using the algebraic expressions
listed in Table 1, as illustrated in Figure 2, due to the dependency problem asso-
ciated with the computation of relaxations of composite functions. Other convex
activation functions, namely, ELU, SELU, and parametric ReLU, cannot be easily
implemented using the frameworks of [30] and [32], as the conditional statement
in the activation function definitions breaks the factorable function assumption
inherent to these relaxation algorithms.

Two other considerations serve to motivate interest in alternatives to the ReLU
function. First, the use of a twice-differentiable activation function is desirable,
as twice-differentiability is generally sufficient to ensure second-order pointwise
convergence of relaxations of ANNs [60]; a key consideration in mitigating the
clustering problem present in deterministic global optimization algorithms [61].
Although no function other than softplus listed in Table 1 is twice differentiable,
one can reasonably expect a more significant degree of nondifferentiability to gen-
erally occur within nonsmooth activation functions as the nonsmooth behavior
may arise from both the mid(·) operator present in the McCormick composition
rule and the envelope itself. Second, the time spent calculating relaxations of the
activation function may be minor when compared with the time spent in solv-
ing linear, mixed-integer, and convex nonlinear problems in any given iteration of
the B&B algorithm. As such, it may be beneficial to compute tighter relaxations of
slightly more computationally expensive terms if one may substantially reduce the
overall number of iterations performed by the global solver and gain additional
benefits associated with bounds tightening algorithms or other key heuristics

Springer Nature 2021 LATEX template

10 3.1 Convex Activation Functions

Activation Function Form f (x) Derivative f ′(x) Source

ReLU max{0, x}

{
1, x > 0

0, x ≤ 0
[64]

Parametric ReLU
0 <α< 1

{
x, if x > 0

αx, otherwise

{
1, x > 0

α, x ≤ 0
[65]

Maxsig
(Let a be a root of
1+exp(−a)−a−1)

max(x,1/(1+exp(−x)))

{
1, x > a

exp(−x)/(exp(−x)+1)2, x ≤ a
[66]

Maxtanh max(x, tanh(x))

{
1, x > 0

sech2(x), x ≤ 0
[66]

Softplus log(1+exp(x)) (1+exp(−x))−1 [67]

Exponential Linear
Unit (ELU) α> 0

{
x, x > 0

α(exp(x)−1), x ≤ 0

{
1, x > 0

αexp(x), x ≤ 0
[57]

Scaled Exponential
Linear Unit (SELU)

λ= 1.0507, α= 1.67326
λ

{
x, x > 0

α(exp(x)−1), x ≤ 0

{
λ, x > 0

λαexp(x), x ≤ 0
[58]

Table 1 Convex activation functions and their first derivatives are defined in this table.

[62, 63]. These considerations remain important for sigmoidal (convexoconcave)
activation functions and novel self-gating activation functions.

2 0 2
0.0

0.5

1.0

1.5

2.0

2.5
Softplus

2 0 2
0.0

0.5

1.0

1.5

2.0

2.5
Maxsig

2 0 2
1

0

1

2

Maxtanh

Function McCormick relaxation Envelope

Fig. 2 Relaxations of some common rectifier-like activation functions are weaker than their corre-
sponding convex/concave envelopes when the relaxations are computed using the rules presented in
[30]. The activation function, the relaxations of form f (x) from Table 1 computed according to the rules
presented in [30], and convex/concave envelopes of the activation function, are shown in each subplot
on the domain x ∈ [−2,2]. These plots illustrate the overestimation of the classical McCormick relax-
ation approach compared to the envelopes for (Left) Softplus, (Middle) Maxsig, and (Right) Maxtanh
functions.

Springer Nature 2021 LATEX template

3 RELAXATIONS OF ACTIVATION FUNCTIONS 11

Activation Function Form f (x) Derivative f ′(x)

Softsign x/(1+x) (1+x)−2

Hyperbolic tangent tanh(x) sech2(x)

Penalized hyperbolic
tangent

{
tanh(x), x > 0

tanh(αx), x ≤ 0

{
sech2(x), x > 0

α(sech2(αx)), x ≤ 0

Sigmoid (1+exp(−x))−1 exp(−x)(1+exp(−x))−2

Bipolar sigmoid (1−exp(−x))/(1+exp(−x)) 2exp(x)(1+exp(x))−2

Table 2 Convexoconcave activation functions and their first derivatives are defined in this table
[66, 68].

3.2 Convexoconcave Activation Functions

2 0 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Softsign

2 0 2
0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid

2 0 2

4

2

0

Bisigmoid

Function McCormick relaxation Envelope

Fig. 3 Many sigmoidal activation functions have relaxations that are weaker than their envelopes
when computed using the rules presented in [30]. The activation function, the relaxations of form f (x)
from Table 2 computed according to the rules presented in [30], and convex/concave envelopes of
the activation function are shown in each subplot on the domain x ∈ [−2,2]. These plots illustrate the
overestimation of the classical McCormick relaxation approach compared to the envelopes for (Left)
Softsign, (Middle) Sigmoid, and (Right) Bisigmoid functions.

Some of the earliest-used activation functions for ANNs are convexoconcave
— a univariate function consisting of a convex region followed by a concave
region. The preliminary use cases for convexoconcave activation functions pri-
marily involve sigmoid and hyperbolic tangent activation functions [69] partici-
pating in shallow ANNs used for regression or classification tasks. As the sigmoid
activation functions are bounded, the inclusion of sigmoid layers may be used to
constrain the range of ANN predictions. Continued investigations into sigmoid-
shaped ANNs have focused on reducing the necessary computational time and
minimizing the vanishing gradient problem, leading to forms such as Softsign (i.e.,

Springer Nature 2021 LATEX template

12 3.3 Other Activation Functions

ElliotSig) [48, 70]. Several equivalent algebraic forms of the hyperbolic tangent
were examined by [3]. The authors noted that the direct application of McCormick
composition rules leads to substantially weaker relaxations than the envelope for
the majority of alternative algebraic forms. We demonstrate here that these results
hold for many other convexoconcave activation functions. While astute usage of
algebraic rearrangements may improve the quality of relaxations, such as the con-
version of the bipolar sigmoid function to the equivalent tanh(x/2) form, this is
not possible for all activation functions.

Convex/concave envelopes of convexoconcave activation functions can be
computed using the rules described by [30] and [71]. A tie point xcv

m is computed at
which the function’s derivative (provided that the function is differentiable at xcv

m)
equals the slope of the secant line between (f (xcv

m), xcv
m) and (f (xU), xU). Similarly,

a tie point xcc
m is computed at which the function’s derivative (provided the func-

tion is differentiable at xcc
m) equals the slope of the secant line between (f (xcc

m), xcc
m)

and (f (xL), xL). That is,

f cv,env (x) =
{

f (xU)+ f (xU)− f (xcv
m)

xU−xcv
m

(x −xU), x ≥ xcv
m

f (x), otherwise
(4)

f cc,env (x) =
{

f (xL)+ f (xL)− f (xcc
m)

xL−xcc
m

(x −xL), x ≤ xcc
m

f (x) otherwise.
(5)

As illustrated in Figure 3, the envelopes yield substantially tighter relaxations than
the direct application of McCormick composition rules [32] to the arithmetic
expressions presented in Table 2.

3.3 Other Activation Functions

Models involving the ReLU function, as well as many of the convex activation
functions presented here, lead to nondifferentiability, which may present issues
for subsequent optimization and analysis. Moreover, sigmoid activation functions
often suffer from a vanishing gradient issue when applied in deep ANNs. Two other
activation functions that have recently garnered significant interest are differen-
tiable and avoid the vanishing gradient problem. The GELU function, denoted as
gelu : R→ R, was developed as a means of merging stochastic dropout and zone-
out procedures naïvely with the ReLU activation function [72]. The cumulative
distribution function arising from the stochastic zero or identity transformation
yields the gelu(·) function, defined as:

gelu(x) = x

2

(
1+erf

(
xp
2

))
. (6)

Another activation function of particular interest in the past few years that was
originally developed for use in reinforcement learning by [73], is the SiLU function,

Springer Nature 2021 LATEX template

3 RELAXATIONS OF ACTIVATION FUNCTIONS 13

Fig. 4 The gelu(·) and silu(·) activation functions are plotted on the domain X = [−5,5]. The left and
right inflection points, xr,1 and xr,2, respectively, are marked by the dashed vertical lines with the color
corresponding to the respective function. Each function is concave on the domain (−∞, xr,1], convex
on the domain [xr,1, xr,2], and concave on the domain [xr,2,+∞).

herein denoted silu : R→R, and defined as:

silu(x) = x

1+exp(−x)
. (7)

It was noted that the silu(·) function exhibits a basic self-stabilizing property [74].
Similar to the gelu(·) function, the global minimum of the silu(·) function serves
as an implicit regularizer that inhibits learning of large magnitude weights. Sub-
sequent exploratory work by [75] used a reinforcement learning approach with
a recurrent ANN to identify several potentially useful activation functions. They
found the silu(·) activation function and provided strong numerical evidence that
it outperforms a myriad of alternative activation functions.

Figure 4 illustrates the gelu(·) and silu(·) activation functions and their respec-
tive inflection points. We note that the convexity of silu(·) parallels that of gelu(·).
Namely, each function has inflection points xr,1 and xr,2 that bound a region where
they are convex. Outside this region, the functions are concave. These inflection
points occur at ±p2 and approximately ±2.39935 for gelu(·) and silu(·), respec-
tively. Given a domain X , if xr,1, xr2 ∉ X , then the function is either concave or
convex on X and the envelope may be constructed as described in Section 3.1. If
xr,1 ∉ X , xr,2 ∈ X , then f ∈ {gelu,silu} is convexoconcave on X and convex and con-
cave envelopes may be computed from (4) and (5), respectively. If xr,1 ∈ X , xr,2 ∉ X ,
then g = − f , with f ∈ {gelu,silu}, is convexoconcave and its envelope may be
computed using (4) and (5), and then by applying the identity (f cv,env , f cc,env) =
(−g cc,env − g cv,env). We now proceed to derive the convex and concave envelopes
of gelu(·) and silu(·) on X , with xr,1, xr,2 ∈ X in the following Theorem 1.

Springer Nature 2021 LATEX template

14 3.3 Other Activation Functions

Theorem 1. (Convex/Concave Envelopes of gelu(·),silu(·)) Let f : R → R be
defined as either gelu(·) or silu(·), as defined in (6) and (7), respectively. Let
xr,1, xr,2 ∈ X ∈ IR be the inflection points of f (·) such that xr,1 < xr,2 and let xmin be
the point at which f attains its minimum on R. Let f cv , f cc : X → R denote con-
vex and concave relaxations of f on X , respectively. Then, for each x ∈ X , f cv (x) is
given by

f cv (x) =

f (xL)+ f (xcv

m,1)− f (xL)

xcv
m,1−xL (x −xL) x < xcv

m,1

f (x) xcv
m,1 ≤ x < xcv

m,2

f (xcv
m,2)+ f (xU)− f (xcv

m,2)

xU−xcv
m,2

(x −xcv
m,2) xcv

m,2 ≤ x

(8)

where the tie points xcv
m,1 ∈ [xr,1, xmin] and xcv

m,2 ∈ [xmin, xr,2] are points that satisfy
the following, respectively:

f (xcv
m,1)− f (xL)− (xcv

m,1 −xL) f ′(xcv
m,1) = 0, (9)

f (xU)− f (xcv
m,2)− (xU −xcv

m,2) f ′(xcv
m,2) = 0. (10)

Similarly, for each x ∈ X , f cc (x) is given by

f cc (x) = f (xL)+ f (xU)− f (xL)

xU −xL
(x −xL). (11)

Proof Note that under the hypothesis xr,1, xr,2 ∈ X and the convexity/concavity properties
of f (·) ∈ {gelu(·),silu(·)} on X , the envelopes of f are required on a domain consisting of
three adjoining regions where f is concave (R1 = [xL , xr,1]), convex (R2 = [xr,1, xr,2]), and
concave (R3 = [xr,2, xU]), such that X = ⋃

i Ri . First, we note that both gelu(·) and silu(·)
are twice differentiable. Beginning with the convex envelope, we note that f is monoton-
ically decreasing and since xmin > xr,1, f (x) > f (xmin) for all x ∈ R1. As a consequence,
there exists a tie point xcv

m,1 ∈ [xr,1, xmin] that satisfies (9) such that a secant line may be

constructed between (xL , f (xL)) and the point (xcv
m,1, f (xcv

m,1)). This secant line is defined
by the first case of (8) and is the convex envelope of f on R1 and part of R2. Similarly, since
xmin < xr,2 and f is monotonically increasing on R3, f (x) > f (xmin) for all x ∈ R3. Thus,
there exists a tie point xcv

m,2 ∈ [xmin, xr,2] satisfying (10), such that a secant line may be con-

structed between (xcv
m,2, f (xcv

m,2)) and the point (xU , f (xU)). This secant line is defined by

the third case of (8) and is the convex envelope of f on R3 and part of R2. For x ∈ [xcv
m,1, xcv

m,2],
f (x) is convex and therefore is trivially its own convex envelope on this subdomain. Thus,
(8) defines the convex envelope of f on X . Next, we consider the concave envelope. Since f
is monotonically decreasing on [xL , xmin] and monotonically increasing on [xmin, xU], the
concave envelope is defined by the secant line connecting the endpoints (xL , f (xL)) and
(xU , f (xU)), defined by (11). □

We now proceed to examine the convergence behavior of activation function
envelopes and contrast these with naïve McCormick calculations.

Springer Nature 2021 LATEX template

3 RELAXATIONS OF ACTIVATION FUNCTIONS 15

2 0 2

2

1

0

1

2

3

gelu

2 0 2

2

0

2

silu

Function McCormick relaxation Envelope

Fig. 5 Left: The Gaussian error linear unit (gelu(·)) function, the convex/concave relaxations of
x

(
1+erf

(
x/

p
2
))

/2 computed according to the rules presented in [30] and the convex/concave enve-
lope of the gelu function are plotted on x ∈ [−3,3]. Right: The sigmoid-weighted linear unit (silu(·))
function, the convex/concave relaxations of x/(1+exp(−x)) computed according to the rules presented
in [30] and the convex/concave envelope of the silu function are plotted on x ∈ [−3,3].

3.4 Convergence Properties of Convex/Concave Relaxations of
Activation Functions

We now compare the relative performance of naïve McCormick relaxations ver-
sus the newly defined envelopes of the library of activation functions: Softplus,
Maxsig, Maxtanh, Softsign, Sigmoid, Bisigmoid, SiLU, and GELU. Figure 2, Figure
3, and Figure 5 visualize the relative tightness of McCormick relaxations versus the
envelopes. Here, we quantify the performance of the proposed envelopes versus
the naïve McCormick relaxations using two analyses. First, the relative computa-
tional times are measured for constructing convex and concave relaxations on a
domain and evaluating these relaxations and subgradients at a single point. The
second analysis compares the relaxations of prototypical ANNs of varying depth
under a width metric. Relaxations of each activation function have been imple-
mented in the McCormick.jl [35] subpackage of the author’s optimization package
EAGO.jl [59], and is openly available.

The computational time comparison was conducted using the
BenchmarkTools.jl[76] package in Julia v1.6.2 with the default settings. For each
benchmark run, 104 samples were used with an automatically-generated num-
ber of expression evaluations per sample (chosen by the package for accurate
timings). Relaxations of each activation function on the domain X = [−3,3]
were computed using the implemented envelopes as well as applying the stan-
dard McCormick rules to the algebraic forms of each activation function. This
domain was chosen as it encloses the inflection points of all activation functions
considered.

Springer Nature 2021 LATEX template

16 3.4 Convergence Properties of Convex/Concave Relaxations of Activation Functions

Function Softplus Maxsig Maxtanh Softsign Sigmoid SiLU GELU

envelope (µs) 0.172 0.134 23.1 0.919 0.898 1.41 249

naïve (µs) 0.158 0.384 14.9 0.0199 0.221 0.189 135

τ (%) 8.74 -65.2 54.8 4519 306 643 83.9

Table 3 The costs of calculating convex and concave relaxations and corresponding subgradients of
the considered activation functions are tabulated for the newly defined envelopes and naïve
McCormick relaxations. The absolute CPU times (µ s) and relative times (%) τ are reported. For almost
all activation functions in this table, the envelope calculations are more expensive (and sometimes
significantly) due to the necessity of calculating the tie points.

The timing results for calculating envelopes are recorded in Table 3 as per-
centages relative to naïve McCormick relaxations. In most cases, the envelopes
are significantly more computationally expensive to calculate. This is because the
tie points xcv

m , xcc
m must be calculated to construct the envelopes, which in turn

requires the solution of nonlinear algebraic equations. Softplus and Maxsig are
exceptions because they are convex on X , and thus their envelopes are trivial
and less expensive to calculate than naïvely applying the McCormick composi-
tion rules. However, the increased CPU time required to compute envelopes is still
considered small when compared to the CPU time requirements for the other sub-
routines encountered in global optimization, such as optimization-based bounds
tightening, the exact solution of MILPs, and local solution of NLPs, which are
all bottlenecks in the solution of global optimization problems. Moreover, it is
well-known that the use of tighter relaxations accelerates node fathoming, and
therefore, reduces the number of subproblems that must be considered. For com-
plex nested subexpressions, such as ANNs, the gains achieved may be substantial.
We demonstrate the tightness conferred to the relaxations of ANNs by the use of
envelopes using the illustrative numerical example below.

For the analysis of relaxations of ANNs on an input domain, a simple MLP
is generated with two hidden layers, each with a single type of activation func-
tion f (k)(·) ∈ {gelu(·),silu(·)}, and a fully-connected affine layer defining a sin-
gle output value (i.e., fml p = a(4) = o(a(1))). Ten neurons are included in each
layer and the weights and bias values were randomly selected from a uniform
distribution between 0 and 1. To simplify the calculations, we set the input vari-
able a(1) to p ∈ P = [−δp,δp

]
and allowed δp to vary by factors of 10 from

10−1 to 10−4. We consider two distinct metrics used to assess the tightness of
relaxations. First, we consider the maximal pointwise distance from the convex

relaxation to the concave relaxation, P (P) = maxp∈P

(
f cc

ml p (p)− f cv
ml p (p)

)
, which

relates to the pointwise convergence properties of McCormick relaxations. Sec-
ondly, we consider a tightness metric for convex and concave relaxations, H (P) =
diam

([
minp∈P f cv

ml p (p),maxp∈P f cc
ml p (p)

])
, which relates to the Hausdorff conver-

gence properties of McCormick relaxations as discussed in [77]. We refer the reader
to the original work for a full discussion of the underlying theory that motivates
this metric.

Springer Nature 2021 LATEX template

3 RELAXATIONS OF ACTIVATION FUNCTIONS 17

The use of the envelopes improves the tightness of the derived relaxations of
the MLP over naïve McCormick relaxations as illustrated in Figure 6. Under each
distance metric, the relaxations of most activation functions exhibit quadratic
convergence; a property required to avoid the clustering problem in spatial B&B
[78, 79]. Further, as expected, the convex and concave envelopes of the activation
functions result in a significant reduction in overestimation of the relaxations of
the MLP. This improvement is most apparent under the P (P) metric. As previously
hypothesized, despite the additional computational cost required to calculate the
envelopes, it is expected that the reduction in overestimation will significantly
speed up convergence of the B&B algorithm for deterministic global optimization
of models containing ANNs.

δp
��

��
��

��
��

��
��

��
��

��
��

��
��

�
��

�

�
(P
)

Maxsig Expression
Maxsig Envelope
Maxtanh Expression
Maxtanh Envelope

δp

��
��

��
�

ℋ
(P
)

Maxsig Expression
Maxsig Envelope
Maxtanh Expression
Maxtanh Envelope

δp
��

��
��

��
��

��
��

�
��

�
��

�
��

�

�
(P
)

Bisigmoid Expression
Bisigmoid Envelope
Softsign Expression
Softsign Envelope

δp

��
��

��
��

��
�

��
�

��
�

��
�

ℋ
(P
)

Bisigmoid Expression
Bisigmoid Envelope
Softsign Expression
Softsign Envelope

��
��

��
��

��
��

��
��

δp

��
��

��
��

��
��

��
��

��
��

��
�

��
�

�
(P
)

GeLU Expression
GeLU Envelope
SiLU Expression
SiLU Envelope

��
��

��
��

��
��

��
��

δp

��
��

��
��

��
��

��
�

��
�

ℋ
(P
)

GeLU Expression
GeLU Envelope
SiLU Expression
SiLU Envelope

Fig. 6 A comparison of the tightness of the envelopes of activation functions is made against relax-
ations derived using the naïve McCormick relaxation approach. Left: pointwise convergence behavior
is illustrated using the P (P) metric and right: the behavior under the relaxation tightness metric
H (P), is shown. Under each metric, the relaxations generated using the envelopes of the activation
functions outperform naïve McCormick relaxations. This comparison is made for (top) characteristic
convex, (middle) convexoconcave, and (bottom) for the newer SiLU and GELU activation functions
with relaxations from Theorem 1.

Springer Nature 2021 LATEX template

18

4 Global Optimization of ANNs

Optimization problems with ANN models [3] are formalized in this section. The
vector of input variables is defined as x ∈ X ⊆ Rnx , and the vector of output
variables of an ANN is defined as z ∈ Z ⊂ Rnz . h : X × Z → Rnz represents the gen-
eral nonlinear network equations governed by an ANN model. g : X × Z → Rnz

represents the inequalities that constrain the feasible region. φ : X × Z → R rep-
resents the objective function. Generally, a full-space formulation denotes that
the equality constraints governed by a system model are directly embedded. The
formulation with ANNs embedded can be expressed as:

min
x∈X ,z∈Z

φ(x,z) (12)

s.t. h(x,z) = 0

g(x,z) ≤ 0.

As introduced in Section 2.3, in a MLP, the network governing equations
h(x,z) = 0 can be calculated as an explicit input-output form: z = o(x). Thus,
the equality constraints can be eliminated and (12) can be reformulated to a
reduced-space form:

min
x∈X

φ(x,o(x)) (13)

s.t. g(x,o(x)) ≤ 0.

Reduced-space methods with respect to deterministic global optimization origi-
nated in [80], where details were introduced for a method using a B&B algorithm
with only a subset of the decision variables being branched on. This approach was
further generalized for broader classes of model structures (e.g., [32, 81–83]). The
core idea of a reduced-space method is to treat the vector of independent input
variables x as the only decision variables of the optimization problem by eliminat-
ing the equality constraints and therefore the explicit dependence of the problem
on auxiliary variables through intermediate computation and compositions.

In deterministic global optimization, a variation of the spatial B&B algorithm
can be applied to solve nonconvex problems with formulations of (12) and (13)
[52, 62, 63]. The B&B algorithm iteratively partitions the decision space into
successively smaller subdomains and solves a sequence of upper-bounding and
lower-bounding problems on each subdomain. Upper bounds are typically deter-
mined by solving nonconvex optimization problems in subdomains to either
feasibility or local optimality. Lower bounds rely on convex and concave relax-
ations of the objective and constraints. As the algorithm proceeds, the best-found
bounds are saved for comparison. By comparing the obtained upper and lower
bounds, the algorithm converges to an ϵ-optimal global solution in finitely-many
iterations, or a certification of infeasibility.

Springer Nature 2021 LATEX template

5 NUMERICAL EXPERIMENTS 19

Many global optimizers, such as BARON [63, 84] and ANTIGONE [85], may
introduce auxiliary variables to any of the formulations (12) when construct-
ing subproblems, resulting in excessively large dimensionality subproblems with
a high time cost due to the curse of dimensionality. This is especially true for
ANN models as they include multiple layers, neurons, and network equations that
inherently results in a large-scale optimization problem. In contrast, the EAGO
[59] and MAiNGO [86] global solvers allow for the construction of relaxations
directly from (13), which has been shown to reduce the computational complexity
of solving subproblems and dramatically decreases solution time costs on several
examples [3, 33, 80, 83, 87–89].

5 Numerical Experiments

We now illustrate how the use of envelopes described herein leads to a reduction
in CPU run time and allows for a large variety of problems to be solved to deter-
ministic global optimality. This is done by comparing the methods on a randomly
generated benchmark library using the approach presented by Dolan and Moré
[90]. The performance of a solver configuration s is taken to be the solution time
tp,s in CPU seconds (single-threaded) for problem p. We consider the performance
ratio on problem p by solver s to be the ratio of solver s performance to the best
solver performance in the set:

rp,s =
tp,s

min{tp,s : s ∈ S}
.

The performance profile of solver s on a particular benchmark set depicts the
distribution function of the performance metric, ρs (τ); the probability that a
performance ratio rp,s is within a factor τ ∈R of the best possible ratio

ρs (τ) = 1

np
size{p ∈P : rp,s ≤ τ},

where P is the set of problems with np = card(P). A plot comparing rs for each
solver configuration s ∈ S will then illustrate the relative performance. For prob-
lems that terminate due to the specified time limit, the relative gap remaining can
be compared to assess solver performance. The relative gap remaining is given by
(U - L)/max(U, L) where U is the upper bound (best feasible objective value) and L

is the lower bound.

As the focus of this paper lies in the development of global optimization
algorithms—and to the best of our knowledge, no benchmark library of ANN-
embedded global optimization test problems exists—we choose to utilize a ran-
domly generated library of 100 MLPs. Since the following analysis is motivated by a
desire to compare the computational results between solvers and relaxation meth-
ods, we may conceptualize each random MLP as an ideally-trained MLP for some
arbitrary function that serves to extricate the role of the optimization method from

Springer Nature 2021 LATEX template

20 5.1 Implementation

Attribute Values

Number of Input Variables 2 to 5

Number of Hidden Layers 1 to 4

Number of Neurons per Layer 2 to 5

Table 4 The range of values for each metaparameter used to generate the instances in the
benchmark set are listed here.

the confounding effects of surrogate model structure and training methodology.
Prior works have shown that the use of tanh envelopes in trained ANNs [3] and
envelopes participating in trained Gaussian process models [6] lead to a decrease
in overall solve times for optimization. As such, the use of randomly generated
MLPs is expected to yield qualitatively similar results to trained models.

The MLPs used in the benchmark set were constructed by assigning weights
and bias values from a uniform distribution randomly sampled within [−1,1]. The
number of decision variables participating in the MLP, the number of layers, and
the number of neurons per layer for each instance are randomly chosen from a
uniform distribution within the ranges listed in Table 4. The objective function
considered is a simple summation (14):

φ(x,o(x)) =∑
i

oi (x). (14)

The only constraints present in each problem are the box constraints on the
decision variables, xi , such that xi ∈ [−1,1] for i = 1, . . . ,n.

5.1 Implementation

All numerical experiments in this work were run on a single thread of an Intel
Xeon E3-1270 v5 3.60/4.00GHz (base/turbo) processor with 16GB ECC RAM allo-
cated to a virtual machine running the Ubuntu 18.04LTS operating system and
Julia v1.6.2 [91]. Absolute and relative convergence tolerances for the B&B algo-
rithm of 10−4 were specified for all example problems along with a maximum
CPU time limit of 15 minutes (900 seconds). The EAGO.jl v0.7.0 package [59] was
used to solve each optimization problem. Relaxations based on the envelopes
of each activation function were implemented in the McCormick.jl [35] sub-
package of EAGO.jl and are openly available. Validated interval arithmetic was
computed using the package IntervalArithmetic.jl [92]. The Intel MKL package
(2019 Update 2) [93] was used to perform all LAPACK [94, 95] and BLAS [96]
routines. BARON v21.1.13 [63, 84] and SCIP 7.0.3[97] were used for performance
comparisons. The data used with and generated from the following numerical
examples are openly available in the Git repository established at https://github.
com/PSORLab/RSActivationFunctions along with the corresponding problem for-
mulations.

https://github.com/PSORLab/RSActivationFunctions
https://github.com/PSORLab/RSActivationFunctions

Springer Nature 2021 LATEX template

5 NUMERICAL EXPERIMENTS 21

5.2 Benchmark Results

We now examine the impact of the envelopes on the solution times of a reduced-
space global optimizer for solving deterministic global optimization problems
with ANN models. The algebraic expressions for all activation functions con-
sidered in this study can be found in Tables 1 and 2, and Equations 6 and 7.
Computational experiments were then conducted in which global optimization
problems were solved for the benchmark suite of ANNs. To compare the perfor-
mance of using the developed library of envelopes, the optimization problems
were solved using both naïve McCormick relaxations (EAGO - McCormick) as well
as the envelopes (EAGO - Envelope). These configurations are then compared to a
state-of-the-art open-source solver, SCIP [97], and the state of the art commercial
solver BARON [63, 84]. This comparison was made as SCIP, like EAGO, is open-
source but implements the auxiliary variable method to constructing polyhedral
relaxations used to compute lower bounds and refine the problem domain [97]. As
SCIP does not support nonlinear objectives directly, a variable q was introduced
and the problem was recast via the epigraph reformulation:

min
x∈X ,q∈Q

q (15)

s.t.
∑

i
oi (x) ≤ q.

We note that EAGO performs this reformulation automatically as a preprocess-
ing step. MLPs corresponding to sigmoid, softplus, silu, and gelu activation were
considered. As illustrated by the performance profile plot depicted in Figure 7,
EAGO generally outperforms SCIP on this limited benchmark set and the use
of the activation function envelopes developed herein further improves compu-
tational performance, as evidenced by the the increased number of problems
solved within the 15-minute limit detailed in Table 5. As shown in Tables 6 and
7, the use of envelopes in EAGO categorically increases the number of problems
solved within 15 minutes for each activation function and further decreases the
15-minute average relative gap remaining for unsolved problems. Moreover, the
shifted geometric mean solve times shown in Table 8 are reduced by using the
envelopes presented herein.

While EAGO outperforms BARON with the new envelope functions for sig-
moid and silu, we see significantly higher shifted geometric mean solve times for
EAGO than BARON for softplus. While BARON is not an open-source solver, we
may speculate on the potential reasons. We note that the median solve time for
softplus problems is 0.2 CPU seconds, indicating that the geometric mean solve
time is highly influenced by high solution time instances. The softplus activation
function (also termed a “logistic loss" function) is known to have an epigraph that
may be represented by the exponential cone and a disciplined convex program-
ming approach used in BARON’s presolve phase indicates that softplus(aTx+b) is

Springer Nature 2021 LATEX template

22 5.2 Benchmark Results

itself convex [98, 99]. Taken together, these two factors indicate that BARON’s pre-
solve convexity detection may allow it to derive tighter bounds automatically. This
highlights the potential that improved automatic convexity detection may have to
further mitigate the overestimation of activation function relaxations as compared
to the naïve McCormick approach.

We note that for a select number of poorly scaled problems, either BARON,
EAGO, or SCIP may incorrectly terminate with a certificate of infeasibility. This
may be attributed to the rounding errors encountered when computing polyhe-
dral relaxations from convex and concave relaxations and their associated sub-
gradients. EAGO currently makes use of a heuristic approach to ensure that only
numerically-safe affine relaxations are added to subproblems. BARON v21.1.13
makes use of a state-of-the-art adaptive approach to resolve numerical difficul-
ties. In either case, neither of these approaches are sufficient to fully resolve all
numerical issues occurring in the benchmark set. Accordingly, additional work on
resolving these numerical issues remains an active area of research. It should be
noted that the presence of poorly scaled problems in the test set may be due to
the use of randomly generated MLPs. Establishing a trained ANN benchmark set
could be useful in providing some insight into this issue. However, in spite of this
observation, we can see that the use of envelopes in this context leads to cate-
gorically improved computational performance relative to the naïve McCormick
calculations.

Fig. 7 As illustrated by the performance profiles shown for each solver configuration, computing relax-
ations using the envelopes leads to a substantial decrease in CPU solution time for a typical problem
within the benchmark set when compared to either SCIP or the naïve McCormick approach imple-
mented in EAGO. The EAGO (envelope) calculations (blue-solid) also outperform BARON for many
activation function types, which is evident from the superior performance for τ< 5.

Springer Nature 2021 LATEX template

6 CONCLUSION 23

Solver Solved Unsolved

EAGO (Envelope) 280 (93.3%) 20 (6.7%)

EAGO (Naïve McCormick) 260 (86.7%) 40 (13.3%)

SCIP 240 (80.0%) 60 (20.0%)

BARON 273 (91.0%) 27 (9.0%)

Table 5 The number of problems solved within 15 minutes by solver configuration in the benchmark
set, are tabulated. Only sigmoid, softplus, and silu functions are used in these calculations for fair
comparison since gelu is unsupported by both SCIP and BARON. EAGO and the developed envelopes
outperform all other configurations in total problems solved.

Activation Function EAGO (Envelope) EAGO (McCormick) SCIP BARON

Sigmoid 96 (4) 94 (4) 91 (5) 94 (4)

Softplus 93 (7) 88 (7) 85 (8) 92 (7)

SiLU 91 (0) 78 (0) 64 (1) 87 (0)

GELU 76 (0) 59 (0) N/A N/A

Table 6 The number of benchmark problems solved within the 15-minute time limit are listed by
solver configuration and activation function. The number of problems returning an infeasible result
are given in parentheses for each condition. EAGO and the developed envelopes outperform all other
configurations in total problems solved for each activation function.

Activation Function EAGO (Envelope) EAGO (McCormick) SCIP BARON

Sigmoid N/A 2.4×10−3 5.2×101 2.5×10−2

Softplus N/A 1.0×10−1 7.3×101 8.9×101

SiLU 1.7×10−1 9.9×100 2.1×101 4.2×101

GELU 9.5×10−1 3.3×101 N/A N/A

Table 7 The average relative gap remaining for any problems not solved within the 15-minute time
limit are listed by solver configuration and activation function. For each activation funciton, EAGO
with the developed envelopes have significantly smaller relative gaps at the 15-minute limit.

6 Conclusion

In this work, the convex/concave envelopes were developed for a variety of
activation functions commonly used in ANN surrogate models. These included
an identification of several activation functions that have not been previously
implemented in existing libraries of relaxations and lack a general factorable
form. Moreover, the McCormick arithmetic approach was shown to lead to weak
relaxations for several common activation functions that have factorable repre-
sentations. Particular attention was paid to the development of envelopes for the

Springer Nature 2021 LATEX template

24

Activation Function EAGO (Envelope) EAGO (McCormick) SCIP BARON

Sigmoid 1.09 4.16 6.37 1.54

Softplus 2.43 7.19 7.69 1.36

SiLU 5.04 36.77 43.11 9.58

GELU 19.62 82.69 N/A N/A

Table 8 The shifted geometric mean of solve times t1, t2, . . . , tn defined by (
∏n

i=1(ti + s))1/n − s are
given by solver configuration and activation function with s = 1. EAGO using the envelopes developed
herein outperforms naïve McCormick and SCIP on all activation functions examined. However,
BARON outperforms all configurations examined for the Softplus function.

novel SiLU and GELU activation functions that do not belong in standard convex-
ity classes (convex, convexoconcave, etc.) that have been previously addressed.
Further, we demonstrated that the use of these envelopes provides desirable Haus-
dorff and pointwise convergence properties for the relaxations of the underlying
activation functions.

Lastly, we generated benchmark results with respect to the performance of
these relaxations when incorporated into a reduced-space global optimization
routine using the EAGO optimizer. Using a randomly generated benchmark set of
MLPs, we illustrated that the use of envelopes leads to a substantial reduction in
run time and this reduced-space approach outperforms the full-space approach
implemented in SCIP, leading to solving 13.3% more benchmark problems solved
within the specified time limit. Moreover, this approach is comparable to the per-
formance of the state-of-the-art commercial solver BARON. As such, the use of
these envelopes provides a unilateral improvement when computing relaxations
using a reduced-space optimization approach.

Two principal avenues for future work lie in the extension of these methods to
continuous-time neural networks and deep ANNs with implicit representations.
Continuous-time neural networks, such as continuous-time recurrent neural net-
works, may be incorporated into global optimization formulations using modern
dynamic relaxation methods [42–45]. Deep ANNs with an implicit representation
[46] may be addressed using fixed-point relaxation methods [33]. Lastly, particular
attention should be paid to deep residual networks as the overestimation of affine
relaxations computed via McCormick rules is minimal with particular respect to
linear combinations. In any case, the further development of improved methods
for constructing reduced-space relaxations of activation functions and standard
layer structures that participate in ANNs, are expected to lead to improved com-
putational performance and remain an intriguing area for future research.

Lastly, we note that future research and method development for the optimiza-
tion of models containing trained ANNs could greatly benefit from the creation of
a publicly available benchmark library containing relevant academic and indus-
trial examples. To date, a dearth of trained ANNs has been made available from
the corresponding modeling papers. As a result, numerical experiments for the

Springer Nature 2021 LATEX template

6 CONCLUSION 25

demonstration of performance of the established envelopes on trained systems
has been inhibited. However, this work will be critical to further understanding the
impacts of methods across applications.

Data Availability

The datasets generated and analysed during the current study are available in the
Github repository, https://github.com/PSORLab/RSActivationFunctions.

Acknowledgements

Funding: This material is based upon work supported by the National Science
Foundation under Grant No. 1932723. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

https://github.com/PSORLab/RSActivationFunctions

Springer Nature 2021 LATEX template

26

References

[1] Kahrs, O., Marquardt, W.: The validity domain of hybrid models
and its application in process optimization. Chemical Engineer-
ing and Processing: Process Intensification 46(11), 1054–1066 (2007).
https://doi.org/10.1016/j.cep.2007.02.031

[2] Henao, C.A., Maravelias, C.T.: Surrogate-based superstructure
optimization framework. AIChE Journal 57(5), 1216–1232 (2010).
https://doi.org/10.1002/aic.12341

[3] Schweidtmann, A.M., Mitsos, A.: Deterministic global optimization with arti-
ficial neural networks embedded. Journal of Optimization Theory and Appli-
cations 180(3), 925–948 (2018). https://doi.org/10.1007/s10957-018-1396-0

[4] Williams, C., Rasmussen, C.: Gaussian processes for regression.
Advances in Neural Information Processing systems 8, 514–520 (1995).
https://doi.org/10.5555/2998828.2998901

[5] Caballero, J.A., Grossmann, I.E.: An algorithm for the use of surrogate models
in modular flowsheet optimization. AIChE Journal 54(10), 2633–2650 (2008).
https://doi.org/10.1002/aic.11579

[6] Schweidtmann, A.M., Bongartz, D., Grothe, D., Kerkenhoff, T., Lin, X., Naj-
man, J., Mitsos, A.: Deterministic global optimization with gaussian processes
embedded. Mathematical Programming Computation 13(3), 553–581 (2021).
https://doi.org/10.1007/s12532-021-00204-y

[7] Schweidtmann, A.M., Weber, J.M., Wende, C., Netze, L., Mitsos, A.: Obey
validity limits of data-driven models through topological data analysis
and one-class classification. Optimization and Engineering, 1–22 (2021).
https://doi.org/10.1007/s11081-021-09608-0

[8] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irv-
ing, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org (2015). https://www.tensorflow.org/

[9] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., Chintala, S.: PyTorch: An imperative style, high-performance deep

https://www.tensorflow.org/

Springer Nature 2021 LATEX template

6 CONCLUSION 27

learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-
Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 32 (NeurIPS 2019), pp. 8024–8035. Curran Associates, Inc.,
Vancouver, Canada (2019). https://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[10] Fahmi, I., Cremaschi, S.: Process synthesis of biodiesel pro-
duction plant using artificial neural networks as the surrogate
models. Computers & Chemical Engineering 46, 105–123 (2012).
https://doi.org/10.1016/j.compchemeng.2012.06.006

[11] Nagata, Y., Chu, K.H.: Optimization of a fermentation medium using neural
networks and genetic algorithms. Biotechnology Letters 25(21), 1837–1842
(2003). https://doi.org/10.1023/a:1026225526558

[12] Anna, H.R.S., Barreto, A.G., Tavares, F.W., de Souza, M.B.: Machine
learning model and optimization of a PSA unit for methane-nitrogen
separation. Computers & Chemical Engineering 104, 377–391 (2017).
https://doi.org/10.1016/j.compchemeng.2017.05.006

[13] Dornier, M., Decloux, M., Trystram, G., Lebert, A.M.: Interest of neural net-
works for the optimization of the crossflow filtration process. LWT - Food Sci-
ence and Technology 28(3), 300–309 (1995). https://doi.org/10.1016/s0023-
6438(95)94364-1

[14] Nascimento, C.A.O., Giudici, R.: Neural network based approach for optimi-
sation applied to an industrial nylon-6,6 polymerisation process. Computers
& Chemical Engineering 22, 595–600 (1998). https://doi.org/10.1016/s0098-
1354(98)00105-7

[15] Hussain, M.A.: Review of the applications of neural networks in chemical
process control — simulation and online implementation. Artificial Intel-
ligence in Engineering 13(1), 55–68 (1999). https://doi.org/10.1016/s0954-
1810(98)00011-9

[16] Onel, M., Kieslich, C.A., Pistikopoulos, E.N.: A nonlinear support vector
machine-based feature selection approach for fault detection and diagnosis:
Application to the tennessee eastman process. AIChE Journal 65(3), 992–1005
(2019). https://doi.org/10.1002/aic.16497

[17] Seong, Y., Park, C., Choi, J., Jang, I.: Surrogate model with a deep neural net-
work to evaluate gas–liquid flow in a horizontal pipe. Energies 13(4), 968
(2020). https://doi.org/10.3390/en13040968

[18] Villmann, T., Ravichandran, J., Villmann, A., Nebel, D., Kaden, M.: Inves-
tigation of activation functions for generalized learning vector quantiza-
tion. International Workshop on Self-Organizing Maps, 179–188 (2019).

Springer Nature 2021 LATEX template

28

https://doi.org/10.1007/978-3-030-19642-4_18. Springer

[19] Xu, L., Chen, C.P.: Comparison and combination of activation func-
tions in broad learning system. In: 2020 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pp. 3537–3542 (2020).
https://doi.org/10.1109/SMC42975.2020.9282871. IEEE

[20] Nader, A., Azar, D.: Searching for activation functions using a self-
adaptive evolutionary algorithm. In: Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, pp. 145–146 (2020).
https://doi.org/10.1145/3377929.3389942

[21] Cristina, G.N.M., Sanchez, V.G.C., Villegas, O.O.V., Nandayapa,
M., Dominguez, H.d.J.O., Azuela, J.H.S.: Study of the effect of
combining activation functions in a convolutional neural net-
work. IEEE Latin America Transactions 19(5), 844–852 (2021).
https://doi.org/10.1109/TLA.2021.9448319

[22] Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimiza-
tion. Constraints 23(3), 296–309 (2018)

[23] Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math-
ematical Programming, 1–37 (2020)

[24] Kronqvist, J., Misener, R., Tsay, C.: Between steps: Intermediate relaxations
between big-m and convex hull formulations. In: International Conference
on Integration of Constraint Programming, Artificial Intelligence, and Opera-
tions Research, pp. 299–314 (2021). Springer

[25] Tsay, C., Kronqvist, J., Thebelt, A., Misener, R.: Partition-based formulations
for mixed-integer optimization of trained relu neural networks. Advances in
Neural Information Processing Systems 34 (2021)

[26] Grimstad, B., Andersson, H.: ReLU networks as surrogate models in mixed-
integer linear programs. Computers & Chemical Engineering 131, 106580
(2019). https://doi.org/10.1016/j.compchemeng.2019.106580

[27] Schweidtmann, A.M., Huster, W.R., Lüthje, J.T., Mitsos, A.: Deterministic
global process optimization: Accurate (single-species) properties via artifi-
cial neural networks. Computers & Chemical Engineering 121, 67–74 (2019).
https://doi.org/10.1016/j.compchemeng.2018.10.007

[28] Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis.
SIAM, Philadelpha, PA (2009). https://doi.org/10.1137/1.9780898717716

[29] Sahlodin, A.M., Chachuat, B.: Convex/concave relaxations of parametric odes

Springer Nature 2021 LATEX template

6 CONCLUSION 29

using taylor models. Computers & Chemical Engineering 35(5), 844–857
(2011). https://doi.org/10.1016/j.compchemeng.2011.01.031

[30] McCormick, G.P.: Computability of global solutions to factorable noncon-
vex programs: Part I — convex underestimating problems. Mathematical
Programming 10(1), 147–175 (1976). https://doi.org/10.1007/bf01580665

[31] Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relax-
ations. Journal of Global Optimization 51(4), 569–606 (2011).
https://doi.org/10.1007/s10898-011-9664-7

[32] Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations
of algorithms. SIAM Journal on Optimization 20(2), 573–601 (2009).
https://doi.org/10.1137/080717341

[33] Stuber, M.D., Scott, J.K., Barton, P.I.: Convex and concave relaxations of
implicit functions. Optimization Methods and Software 30(3), 424–460
(2015). https://doi.org/10.1080/10556788.2014.924514

[34] Yajima, Y.: Convex envelopes in optimization problems: Convex envelopes
in optimization problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Ency-
clopedia of Optimization, pp. 343–344. Springer, Boston, MA (2001).
https://doi.org/10.1007/0-306-48332-7_74

[35] Wilhelm, M.E., Gottlieb, R.X., Stuber, M.D.: PSORLab/McCormick.jl. Zen-
odo (2020). https://doi.org/10.5281/ZENODO.5749918. https://github.com/
PSORLab/McCormick.jl

[36] Funahashi, K.-i., Nakamura, Y.: Approximation of dynamical systems by
continuous time recurrent neural networks. Neural networks 6(6), 801–806
(1993). https://doi.org/10.1016/S0893-6080(05)80125-X

[37] Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse
problems 34(1), 014004 (2017). https://doi.org/10.1088/1361-6420/aa9a90

[38] Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: Bridg-
ing deep architectures and numerical differential equations. In: International
Conference on Machine Learning, pp. 3276–3285 (2018). PMLR

[39] Ruthotto, L., Haber, E.: Deep neural networks motivated by partial differen-
tial equations. Journal of Mathematical Imaging and Vision 62(3), 352–364
(2020). https://doi.org/10.1007/s10851-019-00903-1

[40] Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary
differential equations. In: Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems, pp. 6572–6583 (2018).
https://doi.org/10.5555/3327757.3327764

https://github.com/PSORLab/McCormick.jl
https://github.com/PSORLab/McCormick.jl

Springer Nature 2021 LATEX template

30

[41] Rackauckas, C., Innes, M., Ma, Y., Bettencourt, J., White, L., Dixit, V.: Dif-
feqflux.jl - A Julia library for neural differential equations. arXiv preprint
arXiv:1902.02376 (2019) https://arxiv.org/abs/1902.02376

[42] Scott, J.K., Barton, P.I.: Improved relaxations for the parametric solutions
of odes using differential inequalities. Journal of Global Optimization 57(1),
143–176 (2013). https://doi.org/10.1007/s10898-012-9909-0

[43] Scott, J.K., Chachuat, B., Barton, P.I.: Nonlinear convex and concave relax-
ations for the solutions of parametric odes. Optimal Control Applications and
Methods 34(2), 145–163 (2013). https://doi.org/10.1002/oca.2014

[44] Wilhelm, M.E., Le, A.V., Stuber, M.D.: Global optimization of stiff dynamical
systems. AIChE Journal (2019). https://doi.org/10.1002/aic.16836

[45] Song, Y., Khan, K.A.: Optimization-based convex relaxations for nonconvex
parametric systems of ordinary differential equations. Mathematical Pro-
gramming (2021). https://doi.org/10.1007/s10107-021-01654-x

[46] El Ghaoui, L., Gu, F., Travacca, B., Askari, A., Tsai, A.: Implicit deep learn-
ing. SIAM Journal on Mathematics of Data Science 3(3), 930–958 (2021).
https://doi.org/10.1137/20M1358517

[47] Celik, A.N., Kolhe, M.: Generalized feed-forward based method
for wind energy prediction. Applied Energy 101, 582–588 (2013).
https://doi.org/10.1016/j.apenergy.2012.06.040

[48] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feed-
forward neural networks. In: Proceedings of The Thirteenth International
Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010).
https://proceedings.mlr.press/v9/glorot10a.html

[49] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine:
theory and applications. Neurocomputing 70(1-3), 489–501 (2006).
https://doi.org/10.1016/j.neucom.2005.12.126

[50] Medsker, L., Jain, L.C.: Recurrent Neural Networks: Design
and Applications, pp. 64–67. CRC press, Boca Raton (1999).
https://doi.org/10.1201/9781003040620

[51] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

[52] Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer,
Berlin, Germany (2013)

https://arxiv.org/abs/https://arxiv.org/abs/1902.02376

Springer Nature 2021 LATEX template

6 CONCLUSION 31

[53] Schweidtmann, A.M., Bongartz, D., Huster, W.R., Mitsos, A.: Deterministic
global process optimization: Flash calculations via artificial neural networks.
In: Computer Aided Chemical Engineering vol. 46, pp. 937–942. Elsevier,
Amsterdam, Netherlands (2019). https://doi.org/10.1016/b978-0-12-818634-
3.50157-0

[54] Chachuat, B.C.: MC++: Toolkit for Construction, Manipulation and Bounding
of Factorable Functions (2020). https://omega-icl.github.io/mcpp/

[55] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep
convolutional neural networks. Communications of the ACM 60(6), 84–90
(2017). https://doi.org/10.1145/3065386

[56] Lu, L., Shin, Y., Su, Y., Karniadakis, G.E.: Dying ReLU and initialization: Theory
and numerical examples. Communications in Computational Physics 28(5),
1671–1706 (2020). https://doi.org/10.4208/cicp.OA-2020-0165

[57] Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289
(2015) https://arxiv.org/abs/1511.07289

[58] Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neu-
ral networks. In: Advances in Neural Information Processing Systems, pp.
971–980 (2017). https://doi.org/10.5555/3294771.3294864

[59] Wilhelm, M.E., Stuber, M.D.: EAGO.jl: easy advanced global opti-
mization in Julia. Optimization Methods and Software, 1–26 (2020).
https://doi.org/10.1080/10556788.2020.1786566

[60] Bompadre, A., Mitsos, A.: Convergence rate of McCormick
relaxations. Journal of Global Optimization 52(1), 1–28 (2011).
https://doi.org/10.1007/s10898-011-9685-2

[61] Kannan, R., Barton, P.I.: The cluster problem in constrained global
optimization. Journal of Global Optimization 69(3), 629–676 (2017).
https://doi.org/10.1007/s10898-017-0531-z

[62] Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global
optimization. Journal of Global Optimization 8(2), 107–138 (1996).
https://doi.org/10.1007/bf00138689

[63] Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach
to global optimization. Mathematical Programming 103(2), 225–249 (2005).
https://doi.org/10.1007/s10107-005-0581-8

[64] Nair, V., Hinton, G.E.: Rectified linear units improve restricted

https://omega-icl.github.io/mcpp/
https://arxiv.org/abs/https://arxiv.org/abs/1511.07289

Springer Nature 2021 LATEX template

32

boltzmann machines. ICML: Proceedings of the 27th Inter-
national Conference on Machine Learning, 807–814 (2010).
https://doi.org/10.5555/3104322.3104425

[65] He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In: 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 1026–1034. IEEE, Santiago,
Chile (2015). https://doi.org/10.1109/iccv.2015.123

[66] Eger, S., Youssef, P., Gurevych, I.: Is it time to swish? Comparing deep
learning activation functions across NLP tasks. Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing (2018).
https://doi.org/10.18653/v1/d18-1472

[67] Zheng, H., Yang, Z., Liu, W., Liang, J., Li, Y.: Improving deep neural networks
using softplus units. In: 2015 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–4 (2015). https://doi.org/10.1109/IJCNN.2015.7280459.
IEEE

[68] Nwankpa, C.E., Ijomah, W., Gachagan, A., Marshall, S.: Activation functions:
comparison of trends in practice and research for deep learning. In: 2nd
International Conference on Computational Sciences and Technology, pp.
124–133 (2021)

[69] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward net-
works are universal approximators. Neural Networks 2(5), 359–366 (1989).
https://doi.org/10.1016/0893-6080(89)90020-8

[70] Elliott, D.L.: A better activation function for artificial neural networks. Techni-
cal report, Institute for Systems Research (1993). http://hdl.handle.net/1903/
5355

[71] Sahlodin, A.M.: Global optimization of dynamic process systems using com-
plete search methods. PhD thesis, McMaster University (2013). https://
macsphere.mcmaster.ca/handle/11375/12803

[72] Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint
(2016) https://arxiv.org/abs/1606.08415

[73] Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning. Neural Networks
107, 3–11 (2018). https://doi.org/10.1016/j.neunet.2017.12.012

[74] Elfwing, S., Uchibe, E., Doya, K.: Expected energy-based restricted boltz-
mann machine for classification. Neural Networks 64, 29–38 (2015).
https://doi.org/10.1016/j.neunet.2014.09.006

http://hdl.handle.net/1903/5355
http://hdl.handle.net/1903/5355
https://macsphere.mcmaster.ca/handle/11375/12803
https://macsphere.mcmaster.ca/handle/11375/12803
https://arxiv.org/abs/https://arxiv.org/abs/1606.08415

Springer Nature 2021 LATEX template

6 CONCLUSION 33

[75] Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint (2017) https://arxiv.org/abs/1710.05941

[76] Chen, J., Revels, J.: Robust benchmarking in noisy environments. arXiv e-
prints (2016) arXiv:1608.04295 [cs.PF]

[77] Najman, J., Mitsos, A.: Convergence analysis of multivariate McCormick
relaxations. Journal of Global Optimization 66(4), 597–628 (2016).
https://doi.org/10.1007/s10898-016-0408-6

[78] Du, K., Kearfott, R.B.: The cluster problem in multivariate global opti-
mization. Journal of Global Optimization 5(3)(3), 253–265 (1994).
https://doi.org/10.1007/bf01096455

[79] Wechsung, A., Schaber, S.D., Barton, P.I.: The cluster problem
revisited. Journal of Global Optimization 58(3), 429–438 (2014).
https://doi.org/10.1007/s10898-013-0059-9

[80] Epperly, T.G.W., Pistikopoulos, E.N.: A reduced space branch and bound algo-
rithm for global optimization. Journal of Global Optimization 11(3), 287–311
(1997). https://doi.org/10.1023/A:1008212418949

[81] Stuber, M.D.: Evaluation of process systems operating envelopes.
PhD thesis, Massachusetts Institute of Technology (2012).
https://doi.org/10.13140/2.1.1775.4409

[82] Wechsung, A.: Global optimization in reduced space. PhD thesis, Mas-
sachusetts Institute of Technology (2014). https://dspace.mit.edu/handle/
1721.1/87131

[83] Bongartz, D., Mitsos, A.: Deterministic global optimization of process flow-
sheets in a reduced space using McCormick relaxations. Journal of Global
Optimization 69(4), 761–796 (2017). https://doi.org/10.1007/s10898-017-
0547-4

[84] Sahinidis, N.V.: BARON 21.1.13: Global Optimization of Mixed-Integer Non-
linear Programs, User’s Manual. (2017). https://www.minlp.com/downloads/
docs/baron%20manual.pdf

[85] Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for continuous/integer
global optimization of nonlinear equations. Journal of Global Optimization
59(2-3), 503–526 (2014). https://doi.org/10.1007/s10898-014-0166-2

[86] Bongartz, D., Najman, J., Sass, S., Mitsos, A.: MAiNGO: McCormick based
algorithm for mixed integer nonlinear global optimization. Process Sys-
tems Engineering (AVT. SVT), RWTH Aachen University (2018). https://git.
rwth-aachen.de/avt-svt/public/maingo

https://arxiv.org/abs/https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1608.04295
https://dspace.mit.edu/handle/1721.1/87131
https://dspace.mit.edu/handle/1721.1/87131
https://www.minlp.com/downloads/docs/baron%20manual.pdf
https://www.minlp.com/downloads/docs/baron%20manual.pdf
https://git.rwth-aachen.de/avt-svt/public/maingo
https://git.rwth-aachen.de/avt-svt/public/maingo

Springer Nature 2021 LATEX template

34

[87] Kearfott, R.B., Castille, J., Tyagi, G.: A general framework for convexity analysis
in deterministic global optimization. Journal of Global Optimization 56(3),
765–785 (2013). https://doi.org/10.1007/s10898-012-9905-4

[88] Khan, K.A., Watson, H.A.J., Barton, P.I.: Differentiable McCormick
relaxations. Journal of Global Optimization 67(4), 687–729 (2016).
https://doi.org/10.1007/s10898-016-0440-6

[89] Khan, K.A., Wilhelm, M., Stuber, M.D., Cao, H., Watson, H.A.J., Barton, P.I.:
Corrections to: Differentiable McCormick relaxations. Journal of Global Opti-
mization 70(3), 705–706 (2018). https://doi.org/10.1007/s10898-017-0601-2

[90] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with per-
formance profiles. Mathematical programming 91(2), 201–213 (2002).
https://doi.org/10.1007/s101070100263

[91] Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh
approach to numerical computing. SIAM Review 59(1), 65–98 (2017).
https://doi.org/10.1137/141000671

[92] Sanders, D.P., Benet, L., lucaferranti, Agarwal, K., Richard, B., Grawitter,
J., Gupta, E., Herbst, M.F., Forets, M., yashrajgupta, Hanson, E., van Dyk,
B., Rackauckas, C., Vasani, R., Miclut, a-Câmpeanu, S., Olver, S., Koolen, T.,
Wormell, C., Vázquez, F.A., TagBot, J., O’Bryant, K., Carlsson, K., Piibeleht, M.,
Reno, Deits, R., Holy, T., Kaluba, M., matsueushi: JuliaIntervals/IntervalArith-
metic.jl: V0.18.2. https://doi.org/10.5281/zenodo.4739394

[93] Fedorov, G., Nguyen, K.T., Harrison, P., Singh, A.: Intel Math Kernel Library
2019 Update 2 Release Notes. (2019). https://software.intel.com/en-us/mkl

[94] Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra,
J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen,
D.: LAPACK Users' Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA (1999). https://doi.org/10.1137/1.9780898719604

[95] Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.: Intel math
kernel library. In: High-Performance Computing on the Intel® Xeon Phi™,
pp. 167–188. Springer, New York, NY (2014). https://doi.org/10.1007/978-3-
319-06486-4_7

[96] Blackford, L.S., Petitet, A., Pozo, R., Remington, K., Whaley, R.C., Demmel, J.,
Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M.: An updated set
of basic linear algebra subprograms (BLAS). ACM Transactions on Mathemat-
ical Software 28(2), 135–151 (2002). https://doi.org/10.1145/567806.567807

[97] Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-
integer nonlinear programs in a branch-and-cut framework.

https://software.intel.com/en-us/mkl

Springer Nature 2021 LATEX template

6 CONCLUSION 35

Optimization Methods and Software 33(3), 563–593 (2018).
https://doi.org/10.1080/10556788.2017.1335312

[98] Grant, M., Boyd, S., Ye, Y.: In: Liberti, L., Maculan, N. (eds.) Disci-
plined convex programming, pp. 155–210. Springer, Boston, MA (2006).
https://doi.org/10.1007/0-387-30528-9_7

[99] Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global opti-
mization relaxations. Mathematical Programming Computation 10(3), 383–
421 (2018). https://doi.org/10.1007/s12532-018-0138-5

	Introduction
	Mathematical Background
	Interval Arithmetic
	Convex and Concave Relaxations
	Artificial Neural Networks

	Relaxations of Activation Functions
	Convex Activation Functions
	Convexoconcave Activation Functions
	Other Activation Functions
	Convergence Properties of Convex/Concave Relaxations of Activation Functions

	Global Optimization of ANNs
	Numerical Experiments
	Implementation
	Benchmark Results

	Conclusion

