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Abstract Deterministic nonconvex optimization solvers generate convex relaxations
of nonconvex functions by making use of underlying factorable representations.
One approach introduces auxiliary variables assigned to each factor that lifts the
problem into a higher-dimensional decision space. In contrast, a generalized Mc-
Cormick relaxation approach offers the significant advantage of constructing re-
laxations in the lower dimensionality space of the original problem without intro-
ducing auxiliary variables, often referred to as a “reduced-space” approach. Recent
contributions illustrated how additional nontrivial inequality constraints may be
used in factorable programming to tighten relaxations of the ubiquitous bilinear
term. In this work, we exploit an analogous representation of McCormick relax-
ations and factorable programming to formulate tighter relaxations in the original
decision space. We develop the underlying theory to generate necessarily tighter
reduced-space McCormick relaxations when a priori convex/concave relaxations
are known for intermediate bilinear terms. We then show how these rules can be
generalized within a McCormick relaxation scheme via three different approaches:
the use of a McCormick relaxations coupled to affine arithmetic, the propaga-
tion of affine relaxations implied by subgradients, and an enumerative approach
that directly uses relaxations of each factor. The developed approaches are bench-
marked on a library of optimization problems using the EAGO.jl optimizer. Two
case studies are also considered to demonstrate the developments: an application
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in advanced manufacturing to optimize supply chain quality metrics and a global
dynamic optimization application for rigorous model validation of a kinetic mech-
anism. The presented subgradient method leads to an improvement in CPU time
required to solve the considered problems to ϵ-global optimality.

Keywords Deterministic Global Optimization; Nonconvex Programming;
McCormick Relaxations; Branch-and-Bound; Multilinear Products
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1 Introduction

Deterministic global optimization is required by many routine process systems en-
gineering (PSE) tasks due to the nonconvexity of underlying process models. Two
main approaches exist to solve global optimization problems deterministically.
The approach that is predominant in state-of-the-art commercial solvers is that of
the auxiliary variable method, which exploits a factorable representation of the un-
derlying problem by subsequently lifting the problem into a higher-dimensional
space [22]. This higher-dimensional representation simplifies the construction of
convex/concave relaxations required to form subproblems, facilitates potentially
tighter relaxations of mixed-integer expressions [30], and simplifies a number of
important heuristics. For some problems, the introduction of these additional vari-
ables may be detrimental as the aforementioned advantages are counterbalanced
by increasing complexity. An alternative to this is relaxations that may be com-
puted in the original problem dimensionality space.

The eponymous McCormick relaxations of the bilinear function were first in-
troduced in [27]. These relaxations bound the bilinear term using a series of affine
inequalities through the introduction of auxiliary variables; an approach used by
many commercially available optimizers, such as ANTIGONE [30] and BARON [54],
and the nonconvex solver options of CPLEX [23] and Gurobi [18]. In the past decade,
a significant effort has been made to further generalize this approach to arbitrary
nonlinear functions. An operator-overloading scheme was detailed by Mitsos et
al. [32] for constructing McCormick-based relaxations of functions described by
a class of direct algorithms (i.e., algorithms with the number of steps/iterations
known a priori). Variations on this manner of constructing relaxations in the origi-
nal problem space through the application of composition rules have been termed
McCormick relaxations; a convention we adopt herein to maintain consistency
with the existing body of literature.

The use of a McCormick relaxation framework [32] potentially offers a signifi-
cant advantage by allowing for relaxations to be constructed in the original prob-
lem space without the introduction of auxiliary variables. Recent developments
have dramatically broadened the scope and performance of this approach. Scott
et al. [62] developed a generalized McCormick relaxation theory for construct-
ing convex and concave composite relaxations using arbitrary convex and con-
cave functions. Tighter composition rules for multiplication and maximum op-
erators were presented in [67,40]. Methods of generating relaxations of implicit
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functions were developed by Stuber et al. [65]. Wechsung et al. [71] developed a
method of propagating McCormick relaxations backwards on a directed acyclic
graph (DAG) representation of a problem. A method for tightening interval bounds
was described in [44]. Alternative differentiable relaxations were developed and
introduced in [25,26]. Moreover, the theoretical underpinnings of McCormick re-
laxation performance has been recently explored. These works have illustrated
that under mild assumptions, McCormick relaxations exhibit quadratic point-wise
convergence [7,41,43]; which may mitigate clustering in branch-and-bound al-
gorithms [24]. Each of these aforementioned advances has been demonstrated
to lead to improved performance of global optimizers for specialized classes of
simulation-inspired problems.

The benefits of using these reduced-space McCormick-based relaxation meth-
ods have been found to span several application areas. These include the deter-
ministic global optimization of process flowsheets [8,9,10], nonconvex optimiza-
tion problems with embedded surrogate models (such as artificial neural networks
and Gaussian process models) [60,59,58,68,75,57], dynamic optimization [73,61],
and reachability analysis [56]. Recently, McCormick relaxations have been imple-
mented in two open-source global optimizers: the EAGO [74] toolkit in Julia [5],
and the MAiNGO [11] software written in C++. In each implementation, the classic
dependency problem inherent to set-valued arithmetics naturally arises; wherein,
the progressive application of bounding rules leads to expansive departures from
convex/concave envelopes of complicated expressions.

To ameliorate the dependency problem, several efforts have been made to ex-
pand the typical library of intrinsic functions to include envelopes for common
functional forms. These efforts include the development of relaxations of componentwise-
convex functions by [38], the construction of novel relaxations of cost and thermo-
dynamic functions in [39], relaxations of activation functions appearing on artifi-
cial neural networks [68] and Gaussian processes [57], as well as special relaxations
for logarithmic mean temperature difference (LMTD) and its reciprocal [31,42].

One expression of particular interest is that of the bilinear term. This term
has been examined extensively within the deterministic nonconvex optimization
community. Specialized approaches to treating these problem classes have led to
numerous optimizers that initially focused on quadratic (and polynomial) prob-
lem formulations and were often subsequently extended to a number of preem-
inent optimizers including BARON [66], ANTIGONE [30], Gurobi [18], GLOMIQO
[29], MOSEK [34], and ALPINE [36,37].

Within the McCormick relaxations literature, the treatment of composite bilin-
ear terms (i.e., w(z) = f (z)g (z), ∀z ∈ Z ) has been limited to three key theoretical
contributions. The first is provided in the work of [32] that details composite re-
laxations derived from McCormick’s original inequalities [27]. The second contri-
bution lies in the analysis of multivariate composite relaxations [67,40] that yield
potentially tighter relaxations of the bilinear term under mild assumptions. Lastly,
a differentiable relaxation of the bilinear term was detailed in [25,26].

In the larger context of full-space (i.e., lifted-dimensionality space) factorable
programming, numerous approaches exist to address the bilinear relaxation, which
do not yet directly have an analog in reduced-space factorable programming. One
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such notable work is that of He and Tawarmalani [19], which details how bilinear
relaxations of composite factors can be improved when a priori under/overesti-
mators (as well as associated bounds of said under/overestimators) of the bilin-
ear factors, are available. This approach necessarily formulates the relaxations in
a higher-dimensional space when applied within a factorable programming con-
text. The authors then propose using a fast combinatorial algorithm to solve a sim-
pler separation problem rather than the original formulation [19].

In this paper, we build upon the recent work of He and Tawarmalani [19], de-
tailing how reduced-space McCormick relaxations may be improved when a priori
knowledge of intermediate convex/concave relaxations exists. We do this by gener-
alizing the results of [19] for factorable programming to composite relaxations. We
subsequently discuss three algorithms used to refine convex/concave relaxations
of functions for a broad class of nonlinear functions in the original problem space.
In Section 2, we detail the mathematical conventions used in the paper. In Sec-
tion 3, we develop composition rules for generating convex/concave relaxations
of intermediate bilinear terms when a priori relaxations are known along with as-
sociated subgradients. Subsequently, in Section 4, we detail three algorithms that
employ this novel theoretical contribution to generate tight relaxations of general
nonlinear functions containing bilinear expressions. In Section 5, we provide nu-
merical examples detailing the utility of each algorithm developed herein. We then
explore two relevant case studies to demonstrate how improved bilinear relax-
ations may be applied: an advanced manufacturing system for optimizing supply
chain quality metrics in Section 6.1, and a global dynamic optimization applica-
tion for parameter estimation and rigorous model validation of a kinetic mecha-
nism in Section 6.2. Lastly, we conclude in Section 7 by highlighting potential areas
for future research.

2 Mathematical Background

In this section, the mathematical notation and conventions utilized in this paper
are defined. Scalar quantities are denoted in lower-case letters (e.g., x) whereas
vectors are represented by boldface lower-case letters (e.g., x). Let X = [xL ,xU ]
represent an n-dimensional interval that is a nonempty compact set defined as
X = {

x ∈Rn : xL ≤ x ≤ xU
}

with xL and xU the lower and upper bounds of the in-
terval, respectively. Additionally, let IRn be the set of all n-dimensional real in-
tervals, and for any D ⊂ Rn , ID = {X ∈ IRn : X ⊂ D} is the set of all interval sub-
sets of D . A set X n is defined as the Cartesian product X n = X × X × ·· · × X . The
mapping F : ID → IRn is said to be inclusion monotonic if X ⊂ Y implies that
F (X ) ⊂ F (Y ). The image of X under the mapping f : D → Rn will be denoted by
f(X ), whereas an inclusion monotonic interval extension of f on X will be denoted
by F (X ) = [fL(X ), fU (X )]. From the Fundamental Theorem of Interval Analysis [33,
p.47] we have f(X ) ⊂ F (X ), ∀X ∈ ID . The midpoint of an interval X ∈ ID is denoted
mid(X ) = (xU +xL)/2 and the radius is given by rad(X ) = (xU −xL)/2, each applied
componentwise.
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Definition 2.1 (Underestimators and Overestimators) Given a function w : Z ⊂
Rn → R, a function u : Z → R is called an underestimator of w on Z if and only if
u(z) ≤ w(z) for every z ∈ Z . Similarly, o : Z ⊂Rn →R is called an overestimator of w
on Z if and only if o(z) ≥ w(z) for every z ∈ Z .

Definition 2.2 (Convex and Concave Relaxations [32]) Given a convex set Z ⊂Rn

and a function w : Z →R, wcv : Z →R is a convex relaxation of w on Z if and only
if it is both convex and an underestimator of w on Z . Similarly, wcc : Z → R is a
concave relaxation of w on Z provided it is both concave and an overestimator of
w on Z .

In the case of vector-valued and matrix-valued functions, convex and concave
relaxations are defined by the respective componentwise and elementwise appli-
cation of the above inequalities.

Definition 2.3 (Factorable Function [62]) A function F : Z ⊂Rn →R is factorable
if it can be expressed in terms of a finite number of factors v1, . . . , vm , such that
given z ∈ Z , vi = zi for i = 1, . . . ,n, and vk is defined for n < k ≤ m as either

1. vk = vi + v j , with, i , j < k, or
2. vk = vi v j , with, i , j < k, or
3. vk = uk (vi ), with, i < k, where uk : Bk → R is a univariate intrinsic function,

and F (z) = vm(z), for every z ∈ Z . A vector-valued function is factorable if each of
its components are factorable functions.

Definition 2.4 (Cumulative Mapping [62]) Let the cumulative mapping vk be the
mapping vk : Z → R defined for each z ∈ Z by the value vk (z) when the factors of
F are computed recursively, as per Definition 2.3, beginning from z.

Proposition 2.1 (McCormick Multiplication Rule [32]) Let Z ⊂Rn be a nonempty
convex set. Let w, x1, x2 : Z →R such that w(z) = x1(z)x2(z). Let xcv

1 : Z →R and xcc
1 :

Z → R be convex and concave relaxations of x1 on Z , respectively. Let xcv
2 : X → R

and xcc
2 : X →R be convex and concave relaxations of x2 on Z , respectively. Further,

let xL
1 , xU

1 , xL
2 , xU

2 ∈R be bounds on x1, x2 such that

xL
1 ≤ x1(z) ≤ xU

1 and xL
2 ≤ x2(z) ≤ xU

2 , ∀z ∈ Z .

Let the following intermediate functions α1,α2,β1,β2,γ1,γ2,δ1,δ2 : Z → R be de-
fined as

α1(·) = min
{

xL
2 xcv

1 (·), xL
2 xcc

1 (·)} , α2(·) = min
{

xL
1 xcv

2 (·), xL
1 xcc

2 (·)} ,

β1(·) = min
{

xU
2 xcv

1 (·), xU
2 xcc

1 (·)} , β2(·) = min
{

xU
1 xcv

2 (·), xU
1 xcc

2 (·)} ,

γ1(·) = max
{

xL
2 xcv

1 (·), xL
2 xcc

1 (·)} , γ2(·) = max
{

xU
1 xcv

2 (·), xU
1 xcc

2 (·)} ,

δ1(·) = max
{

xU
2 xcv

1 (·), xU
2 xcc

1 (·)} , δ2(·) = max
{

xL
1 xcv

2 (·), xL
1 xcc

2 (·)} .

Then, convex and concave relaxations of w on Z are given by wcv
×,0 and wcc

×,0,

wcv
×,0 : Z →R : z 7→ max

{
α1(z)+α2(z)−xL

1 xL
2 ,β1(z)+β2(z)−xU

1 xU
2

}
,

wcc
×,0 : Z →R : z 7→ min

{
γ1(z)+γ2(z)−xU

1 xL
2 ,δ1(z)+δ2(z)−xL

1 xU
2

}
,
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respectively.

Note that the definitions of wcv
×,0 and wcc

×,0 in Proposition 2.1 arise from stan-
dard McCormick relaxations of the bilinear term. In Section 3, we define two ad-
ditional sets of composite relaxations, denoted wcv

×,1, wcc
×,1, and wcv

×,2, wcc
×,2, respec-

tively, which may be combined with wcv
×,0 and wcc

×,0 to yield tighter relaxations.
The principal contributions of this paper lie in an extension of the work of [19]

to relaxations necessarily as tight as those presented in Proposition 2.1.

Theorem 2.1 (Underestimators of the bilinear term implied by a priori under-
estimators (Theorem 1 in [19])) Let f L

1 ≤ a1 ≤ f U
1 and f L ≤ a2 ≤ f U . Then, consider

the set:
P =

{
(u1, f1,u2, f2) : f L

1 ≤ u1 ≤ min
{

f1, a1
}

, f1 ≤ f U
1 ,

f L
2 ≤ u2 ≤ min{ f2, a2}, f2 ≤ f U

2

}
.

The following linear inequalities are valid for the epigraph of f1 f2 over P:

f1 f2 ≥ max



e1 := f1 f 2U + f2 f U
1 − f U

1 f U
2

e2 := ( f U
2 −a2)u1 + ( f U

1 −a1)u2 +a2 f1 +a1 f2

+a1a2 −a1 f U
2 − f U

1 a2

e3 := ( f U
2 − f L

2 )u1 + f L
2 f1 +a1 f2 −a1 f U

2

e4 := ( f U
1 − f L

1 )u2 +a2 f1 + f L
1 f2 − f U

1 a2

e5 := (a2 − f L
2 )u1 + (a1 − f L

1 )u2 + f L
2 f1 + f L

1 f2 −a1a2

e6 := f L
1 f2 + f1 f L

2 − f L
1 f L

2



. (1)

Theorem 2.2 (Overestimators of the bilinear term implied by a priori underes-
timators (Theorem 5 in [19])) Let f L

1 ≤ a1 ≤ f U
1 and f L ≤ a2 ≤ f U . Then, consider

the set:
P =

{
(u1, f1,u2, f2) : f L

1 ≤ u1 ≤ min
{

f1, a1
}

, f1 ≤ f U
1 ,

f L
2 ≤ u2 ≤ min{ f2, a2}, f2 ≤ f U

2

}
.

The following linear inequalities are valid for the epigraph of f1 f2 over P:

f1 f2 ≤ min



r1 := f L
2 f1 + f U

1 f2 − f U
1 f L

2

r2 := ( f L
2 −a2)u1 + (a1 − f U

1 )u2 +a2 f1 + f U
1 f2 −a1 f L

2

r3 := ( f L
2 − f U

2 )u1 +a1 f2 + f U
2 f1 −a1 f L

2

r4 := ( f L
1 − f U

1 )u2 +a2 f1 + f U
1 f2 − f L

1 a2

r5 := (a2 − f U
2 )u1 + ( f L

1 −a1)u2 + f U
2 f1 +a1 f2 − f L

1 a2

r6 := f1 f U
2 + f L

1 f2 − f L
1 f U

2


. (2)

We note that e1, e6, r1, and r6 in Theorem 2.1 and Theorem 2.2 are simply re-
statements of the inequalities presented by McCormick [27]. The other inequalities
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are derived from simple algebraic arguments. For a full review of these derivations,
the reader is directed to [19]. We will recreate one such derivation from [19] here
as an example:

f1 f2 = ( f1 − f L
1 )( f2 − f L

2 )+ f L
1 f2 + f L

2 f1 − f L
1 f L

2

≥ (u1 − f L
1 )( f2 − f L

2 )+ f L
1 f2 + f L

2 f1 − f L
1 f L

2

≥ (u1 − f L
1 )( f2 − f L

2 )+ (a1 − f L
1 )( f2 − f L

2 )

− (a1 − f L
1 )( f U

2 − f L
2 )+ f L

2 f1 + f L
1 f2 − f L

1 f L
2

= e3.

Definition 2.5 (Subgradients [65]) Let Z ⊂ Rn be a nonempty convex set, wcv :
Z →R be convex, and wcc : Z →R be concave. A function scv

w : Z →Rn is a subgra-
dient of wcv on Z if for each z̄ ∈ Z , wcv (z) ≥ wcv (z̄)+ scv

w (z̄)T(z− z̄),∀z ∈ Z . Simi-
larly, a function scc

w : Z →Rn is a subgradient of wcc on Z if for each z̄ ∈ Z , wcc (z) ≤
wcc (z̄)+scc

w (z̄)T(z− z̄),∀z ∈ Z .

Note that subgradients of vector-valued functions and subgradients of matrix-valued
functions will be defined analogously and will be matrix-valued functions and
third-order tensor-valued functions, respectively.

Theorem 2.3 (Multiplication Rule for Subgradients [32]) Suppose that Z ⊂ Rn is
a nonempty convex set, and z ∈ Z . Let w, x1, x2 : Z → R such that w(z) = x1(z)x2(z).
Let xcv

1 : Z → R and xcc
1 : Z → R be convex and concave relaxations of x1 on Z ,

respectively. Let xcv
2 : X → R and xcc

2 : X → R be convex and concave relaxations of
x2 on Z , respectively. Further, let xL

1 , xU
1 , xL

2 , xU
2 ∈R be bounds on x1, x2 such that

xL
1 ≤ x1(z) ≤ xU

1 and xL
2 ≤ x2(z) ≤ xU

2 , ∀z ∈ Z .

Let the intermediate functions α1,α2,β1,β2,γ1,γ2,δ1,δ2 : Z → R and convex/con-
cave relaxations wcv

×,0, wcc
×,0 : Z → R be defined as in Proposition 2.1. Then the sub-

gradients of α1,α2,β1,β2,γ1,γ2,δ1,δ2 at z̄ ∈ Z are respectively given by:

sα1 (z̄) =
{

xL
2 scv

x1
(z̄) if xL

2 ≥ 0,

xL
2 scc

x1
(z̄) otherwise,

sα2 (z̄) =
{

xL
1 scv

x2
(z̄) if xL

1 ≥ 0,

xL
1 scc

x2
(z̄) otherwise,

sβ1 (z̄) =
{

xU
2 scv

x1
(z̄) if xU

2 ≥ 0,

xU
2 scc

x1
(z̄) otherwise,

sβ2 (z̄) =
{

xU
1 scv

x2
(z̄) if xU

1 ≥ 0,

xU
1 scc

x2
(z̄) otherwise,

sγ1 (z̄) =
{

xL
2 scc

x1
(z̄) if xL

2 ≥ 0,

xL
2 scv

x1
(z̄) otherwise,

sγ2 (z̄) =
{

xU
1 scc

x2
(z̄) if xU

1 ≥ 0,

xU
1 scv

x2
(z̄) otherwise,

sδ1 (z̄) =
{

xU
2 scc

x1
(z̄) if xU

2 ≥ 0,

xU
2 scv

x1
(z̄) otherwise,

sδ2 (z̄) =
{

xL
1 scc

x2
(z̄) if xL

1 ≥ 0,

xL
1 scv

x2
(z̄) otherwise,

where scv
x1

(z̄), scc
x1

(z̄), scv
x2

(z̄), scc
x2

(z̄), are, respectively, subgradients of xcv
1 , xcc

1 , xcv
2 , xcc

2
on Z at z̄ ∈ Z . Finally, the subgradients scv

w×,0
(z̄), scc

w×,0
(z̄) of wcv

×,0, wcc
×,0 on Z at z̄ ∈ Z
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are, respectively, given by:

scv
w×,0

(z̄) =
{

sα2 (z̄)+sα2 (z̄), if α1(z̄)+α2(z̄)−xL
1 xL

2 ≥β1(z̄)+β2(z̄)−xU
1 xU

2 ,

sβ1 (z̄)+sβ2 (z̄), otherwise,

scc
w×,0

(z̄) =
{

sγ1 (z̄)+sγ2 (z̄), if γ1(z̄)+γ2(z̄)−xU
1 xL

2 ≥ δ1(z̄)+δ2(z̄)−xL
1 xU

2

sδ1 (z̄)+sδ2 (z̄), otherwise.

For details relating to computing relaxations and associated subgradients of
factors using other functional forms, the reader is referred to [32]. For convex/-
concave relaxations vcv

k , vcc
k : Z → R computed through the recursive application

of these rules to each factor vk , the factorable function F also constitutes a cumu-
lative mapping.

3 Tight Composite Relaxations of Bilinear Terms

We now describe two major theoretical contributions. First, we develop Theorem 3.1
as an extension of Theorem 2.1 and Theorem 2.2 (Theorem 1 and Theorem 5 from
[19], respectively), to compute convex and concave relaxations of the bilinear term
using convex and concave relaxations of its arguments and a priori convex under-
estimators. This new result differs from the preliminary work of [19] in that the
introduction of auxiliary variables for intermediate bilinear terms into the opti-
mization formulation, is not required. Secondly, a corresponding approach that
uses a priori concave relaxations is then detailed in Theorem 3.2. We then combine
these results in Theorem 3.3 to obtain tight relaxations of bilinear terms exploiting
both a priori convex and concave relaxations, simultaneously. Finally, we develop
subgradients of these relaxations in Theorem 3.4.

Theorem 3.1 Define x1 : Z ⊂ Rn → X1 ⊂ R and x2 : Z ⊂ Rn → X2 ⊂ R with corre-
sponding convex/convex relaxations xcv

1 , xcc
1 , xcv

2 , xcc
2 : Z → R on Z . Let u1,u2 : Z ⊂

Rn → R be underestimators of x1, x2 on Z , respectively, with associated (a1, a2) ∈
X1 × X2 ∈ IR2 such that xL

1 ≤ u1(·) ≤ min{x1(·), a1} and xL
2 ≤ u2(·) ≤ min{x2(·), a2}.

Further, suppose that convex relaxations of u1 and u2 on Z are available. Let the
following intermediate factors be defined as:

α1(·) = min{a2xcv
1 (·), a2xcc

1 (·)}, β1(·) = max{xU
1 xcv

2 (·), xU
1 xcc

2 (·)},

α2(·) = min{a1xcv
2 (·), a1xcc

2 (·)}, β2(·) = max{a2xcv
2 (·), a2xcc

2 (·)},

α3(·) = min{xL
2 xcv

1 (·), xL
2 xcc

1 (·)}, β3(·) = max{a1xcv
2 (·), a1xcc

2 (·)},

α4(·) = min{xL
1 xcv

2 (·), xL
1 xcc

2 (·)}, β4(·) = max{xU
2 xcv

2 (·), xU
2 xcc

2 (·)},

ρ1 = a1a2 −a1xU
2 −a2xU

1 .



Improved convex and concave relaxations of composite bilinear forms⋆ 9

Then, the following expressions:

wcv
1 (·) = (xU

2 −a2)ucv
1 (·)+ (xU

1 −a1)ucv
2 (·)+α1(·)+α2(·)+ρ1, (3)

wcv
2 (·) = (xU

2 −xL
2 )ucv

1 (·)+α2(·)+α3(·)−a1xU
2 , (4)

wcv
3 (·) = (xU

1 −xL
1 )ucv

2 (·)+α1(·)+α4(·)−a2xU
1 , (5)

wcv
4 (·) = (a2 −xL

2 )ucv
1 (·)+ (a1 −xL

1 )ucv
2 (·)+α3(·)+α4(·)−a1a2, (6)

are convex relaxations of w(·) = x1(·)x2(·) on Z . Moreover, the following expressions:

wcc
1 (·) = (xL

2 −a2)ucv
1 (·)+ (a1 −xU

1 )ucv
2 (·)+β1(·)+β2(·)−a1xL

2 , (7)

wcc
2 (·) = (xL

2 −xU
2 )ucv

1 (·)+β3(·)+β4(·)−a1xL
2 , (8)

wcc
3 (·) = (xL

1 −xU
1 )ucv

2 (·)+β1(·)+β2(·)−a2xL
1 , (9)

wcc
4 (·) = (a2 −xU

2 )ucv
1 (·)+ (xL

1 −a1)ucv
2 (·)+β3(·)+β4(·)−a2xL

1 , (10)

are concave relaxations of w(·) = x1(·)x2(·) on Z . Lastly, the expressions

wcv
×,1(·) = max

{
wcv

1 (·), wcv
2 (·), wcv

3 (·), wcv
4 (·)} , (11)

wcc
×,1(·) = min

{
wcc

1 (·), wcc
2 (·), wcc

3 (·), wcc
4 (·)} , (12)

are convex and concave relaxations of w(·) = x1(·)x2(·) on Z , respectively.

Proof He and Tawarmalani [19] define nontrivial underestimators and overesti-
mators of w = w∗(ξ1,ξ2) = ξ1ξ2 on X1 × X2 by ei (ξ1,ξ2) ≤ w and ri (ξ1,ξ2) ≥ w for
i = 2, . . .5, respectively, as detailed in Theorem 2.1 and Theorem 2.2. As we have
xi : Z → Xi for i ∈ 1,2, we may write Ei (·) = ei (x1(·), x2(·)) and Ri (·) = ri (x1(·), x2(·))
for i = 2, . . .5, respectively, which are under/overestimators of w(·) on Z . Namely,

E2(·) = (xU
2 −a2)u1(·)+ (xU

1 −a1)u2(·)+a2x1(·)+a1x2(·)+ρ1, (13)

E3(·) = (xU
2 −xL

2 )u1(·)+xL
2 x1(·)+a1x2(·)−a1xU

2 , (14)

E4(·) = (xU
1 −xL

1 )u2(·)+a2x1(·)+xL
1 x2(·)−a2xU

1 , (15)

E5(·) = (a2 −xL
2 )u1(·)+ (a1 −xL

1 )u2(·)+xL
2 x1(·)+xL

1 x2(·)−a1a2, (16)

R2(·) = (xL
2 −a2)u1(·)+ (a1 −xU

1 )u2(·)+a2x1(·)+xU
1 x2(·)−a1xL

2 , (17)

R3(·) = (xL
2 −xU

2 )u1(·)+a1x2(·)+xU
2 x1(·)−a1xL

2 , (18)

R4(·) = (xL
1 −xU

1 )u2(·)+a2x1(·)+xU
1 x2(·)−a2xL

1 , (19)

R5(·) = (a2 −xU
2 )u1(·)+ (xL

1 −a1)u2(·)+xU
2 x1(·)+a1x2(·)−a2xL

1 . (20)

First, we note that the terms (xU
i − ai ), (xU

i − xL
i ), and (ai − xL

i ) are positive for
i ∈ {1,2}. As such, convex relaxations of the αui (·) terms in (13)-(16) on Z are given
by αucv

i (·), for i ∈ {1,2}. Next, we note that (ai −xU
i ), (xL

i −xU
i ), and (xL

i −ai ) are neg-
ative by construction for i ∈ {1,2}. As such, concave relaxations of the αui (·) terms
in (17)-(20) on Z are given by αucv

i (·), for i ∈ {1,2}. The remaining coefficients of
x1(·) and x2(·) may be either positive or negative, and as such, a convex relaxation
of αxi (·) on Z is given by min

{
αxcv

i (·),αxcc
i (·)}, whereas a concave relaxation of
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αxi (·) on Z is given by max
{
αxcv

i (·),αxcc
i (·)} for i ∈ {1,2}. The sum of convex func-

tions is convex, and the sum of concave functions is concave. The pointwise max-
imum of convex underestimators is convex while the pointwise minimum of con-
cave overestimators is concave. Thus, the expressions (3)-(12) hold. ⊓⊔

The above relaxations are derived from Theorem 2.1 and Theorem 2.2. This re-
quires knowledge of valid underestimating functions u1 and u2. When propagat-
ing relaxations through a composite function, it is quite common to have a priori
knowledge of valid overestimating functions as well. The following Theorem 3.2 is
a new result that adapts the results of Theorem 3.1 to improve relaxations using
valid overestimating functions known a priori.

Theorem 3.2 Define x1 : Z ⊂ Rn → X1 ⊂ R and x2 : Z ⊂ Rn → X2 ⊂ R with corre-
sponding convex/convex relaxations xcv

1 , xcc
1 , xcv

2 , xcc
2 : Z → R on Z . Let o1,o2 : Z →

R be overestimators of x1, x2 on Z , respectively, with associated (b1,b2) ∈ X1 × X2 ∈
IR2 such that xU

1 ≥ o1(·) ≥ max{x1(·),b1} and xU
2 ≥ o2(·) ≥ max{x2(·),b2}. Further-

more, suppose that concave relaxations of o1 and o2 on Z are available. Let the fol-
lowing intermediate factors be defined as

δ1(·) = min{b2xcv
1 (·),b2xcc

1 (·)}, γ1(·) = max{b2xcv
1 (·),b2xcc

1 (·)},

δ2(·) = min{b1xcv
2 (·),b1xcc

2 (·)}, γ2(·) = max{xL
1 xcv

2 (·), xL
1 xcc

2 (·)},

δ3(·) = min{xU
2 xcv

1 (·), xU
2 xcc

1 (·)}, γ3(·) = max{b1xcv
2 (·),b1xcc

2 (·)},

δ4(·) = min{xU
1 xcv

2 (·), xU
1 xcc

2 (·)}, γ4(·) = max{xL
2 xcv

1 (·), xL
2 xcc

1 (·)},

ρ2 = b1b2 −b1xL
2 −b2xL

1 .

Then, the following expressions:

wcv
5 (·) = (xL

2 −b2)occ
1 (·)+ (xL

1 −b1)occ
2 (·)+δ1(·)+δ2(·)+ρ2, (21)

wcv
6 (·) = (xL

2 −xU
2 )occ

1 (·)+δ2(·)+δ3(·)−b1xL
2 , (22)

wcv
7 (·) = (xL

1 −xU
1 )occ

2 (·)+δ1(·)+δ4(·)−b2xL
1 , (23)

wcv
8 (·) = (b2 −xU

2 )occ
1 (·)+ (b1 −xU

1 )occ
2 (·)+δ3(·)+δ4(·)−b1b2, (24)

are convex relaxations of w(·) = x1(·)x2(·) on Z . Moreover, the following expressions:

wcc
5 (·) = (xU

2 −b2)occ
1 (·)+ (b1 −xL

1 )occ
2 (·)+γ1(·)+γ2(·)−b1xU

2 , (25)

wcc
6 (·) = (xU

2 −xL
2 )occ

1 (·)+γ3(·)+γ4(·)−xU
2 b1, (26)

wcc
7 (·) = (xU

1 −xL
1 )occ

2 (·)+γ1(·)+γ2(·)−xU
1 b2, (27)

wcc
8 (·) = (b2 −xL

2 )occ
1 (·)+ (xU

1 −b1)occ
2 (·)+γ3(·)+γ4(·)−xU

1 b2, (28)

are concave relaxations of w(·) = x1(·)x2(·) on Z . Lastly, the expressions

wcv
×,2(·) = max

{
wcv

5 (·), wcv
6 (·), wcv

7 (·), wcv
8 (·)} ,

wcc
×,2(·) = min

{
wcc

5 (·), wcc
6 (·), wcc

7 (·), wcc
8 (·)} ,

are convex and concave relaxations of w(·) = x1(·)x2(·) on Z , respectively.
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Proof First, we note that x1(·)x2(·) = y1(·)y2(·), with y1(·) =−x1(·) and y2(·) =−x2(·).
Define (a1, a2) ∈ Y1 ×Y2, where Yi =−Xi and ai =−bi . Let u1,u2 : Z →R be under-
estimators of y1, y2 on Z , respectively, defined as ui (·) = −oi (·). Then, we see that
yL

1 ≤ u1(·) ≤ min{y1(·), a1}, y1(·) ≤ yU
1 and yL

2 ≤ u2(·) ≤ min{y2(·), a2}, y2(·) ≤ yU
2 .

Similarly, we have yL
i ≤ ui (·) ≤ min{yi (·), ai } and −yL

i ≥ −ui (·) ≥ −min{yi (·), ai },

and therefore xU
i ≥ −ui (·) ≥ −min{−xi (·), ai } = max{xi (·),−ai } = max{xi (·),bi }. It

remains to show that the facets defined by (21)-(28) are valid. Again inspecting the
underestimators and overestimators of Theorem 2.1 and Theorem 2.2, we have

E2(·) = (yU
2 −a2)u1(·)+ (yU

1 −a1)u2(·)+a2 y1(·)+a1 y2(·)+a1a2 −a1 yU
2 − yU

1 a2,

E3(·) = (yU
2 − yL

2 )u1(·)+ yL
2 y1(·)+a1 y2(·)−a1 yU

2 ,

E4(·) = (yU
1 − yL

1 )u2(·)+a2 y1(·)+ yL
1 y2(·)−a2 yU

1 ,

E5(·) = (a2 − yL
2 )u1(·)+ (a1 − yL

1 )u2(·)+ yL
2 y1(·)+ yL

1 y2(·)−a1a2,

R2(·) = (yL
2 −a2)u1(·)+ (a1 − yU

1 )u2(·)+a2 y1(·)+ yU
1 y2(·)−a1 yL

2 ,

R3(·) = (yL
2 − yU

2 )u1(·)+a1 y2(·)+ yU
2 y1(·)−a1 yL

2 ,

R4(·) = (yL
1 − yU

1 )u2(·)+a2 y1(·)+ yU
1 y2(·)−a2 yL

1 ,

R5(·) = (a2 − yU
2 )u1(·)+ (yL

1 −a1)u2(·)+ yU
2 y1(·)+a1 y2(·)−a2 yL

1 .

Substituting in bi for ai , xi (·) for yi (·), and oi (·) for ui (·), we get

E2(·) = (xL
2 −b2)o1(·)+ (xL

1 −b1)o2(·)+b2x1(·)+b1x2(·)+b1b2 −b1xL
2 −b2xL

1 ,

E3(·) = (xL
2 −xU

2 )o1(·)+xU
2 x1(·)+b1x2(·)−b1xL

2 ,

E4(·) = (xL
1 −xU

1 )o2(·)+b2x1(·)+xU
1 x2(·)−b2xL

1 ,

E5(·) = (b2 −xU
2 )o1(·)+ (b1 −xU

1 )o2(·)+xU
2 x1(·)+xU

1 x2(·)−b1b2,

R2(·) = (xU
2 −b2)o1(·)+ (b1 −xL

1 )o2(·)+b2x1(·)+xL
1 x2(·)−b1xU

2 ,

R3(·) = (xU
2 −xL

2 )o1(·)+b1x2(·)+xL
2 x1(·)−b1xU

2 ,

R4(·) = (xU
1 −xL

1 )o2(·)+b2x1(·)+xL
1 x2(·)−b2xU

1 ,

R5(·) = (b2 −xL
2 )o1(·)+ (xU

1 −b1)o2(·)+xL
2 x1(·)+b1x2(·)−b2xU

1 .

We then construct convex and concave relaxations of these expressions in a man-
ner similar to that for Theorem 3.1. ⊓⊔
Theorem 3.3 Define x1 : Z ⊂ Rn → X1 ⊂ R and x2 : Z ⊂ Rn → X2 ⊂ R with corre-
sponding convex/convex relaxations xcv

1 , xcc
1 , xcv

2 , xcc
2 : Z → R on Z . Let u1,u2 : Z ⊂

Rn → R be underestimators and o1,o2 : Z → R be overestimators of x1, x2 on Z , re-
spectively. Let (a1, a2), (b1,b2) ∈ X1 × X2 ∈ IR2 such that xL

1 ≤ u1(·) ≤ min{x1(·), a1},
max{x1(·),b1} ≤ o1(·) ≤ xU

1 , xL
2 ≤ u2(·) ≤ min{x2(·), a2}, and max{x2(·),b2} ≤ o2(·) ≤

xU
2 . Then, convex and concave relaxations of w(·) = x1(·)x2(·) are, respectively, given

by

wcv (·) = max
{

wcv
×,0(·), wcv

×,1(·), wcv
×,2(·), wL}

,

wcc (·) = min
{

wcc
×,0(·), wcc

×,1(·), wcc
×,2(·), wU }

.
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Proof This result follows directly from the application of Proposition 2.1, Theo-
rem 3.1, and Theorem 3.2, and basic convexity/concavity properties. ⊓⊔
Similar to the discussion in [19], the relaxations from Theorem 3.1 and Theorem 3.2
reduce to the form given by Proposition 2.1 if ai ,bi ∈

{
xL

i , xU
i

}
for i ∈ {1,2}.

Proposition 3.1 Define x1 : Z ⊂ Rn → X1 ⊂ R and x2 : Z ⊂ Rn → X2 ⊂ R with corre-
sponding convex/convex relaxations xcv

1 , xcc
1 , xcv

2 , xcc
2 : Z → R on Z . Let u1,u2 : Z ⊂

Rn →R be underestimators of x1 and x2 on Z , respectively. Let (a1, a2) ∈ X1×X2 ∈ IR2

such that xL
1 ≤ ucv

1 (·) ≤ u1(·) ≤ min{x1(·), a1}, xL
2 ≤ ucv

2 (·) ≤ u2(·) ≤ min{x2(·), a2}.
Further, suppose that ai ∈ {

xL
i , xU

i

}
for i ∈ {1,2} then the convex relaxations pre-

sented in Theorem 3.1 and Theorem 3.2 reduce to wcv
×,0(·).

Proof We proceed by enumeration of the possible cases to illustrate this result.
For brevity, we observe that the relaxations obtained from w(·) = x1(·)x2(·) and
w(·) = x2(·)x1(·) are equivalent. Moreover, w(·) = x1(·)x2(·) can be written as w(·) =
(−x1(·))(−x2(·)) and in doing so negates and swaps the positions of the upper and
lower interval bounds. Then without loss of generality, we restrict our considera-
tion to two cases: (a1, a2) = (xL

1 , xL
2 ) and (a1, a2) = (xL

1 , xU
2 ).

For (a1, a2) = (xL
1 , xL

2 ), we have ucv
i = ui = xL

i which is identical to the (a1, a2) =
(xL

1 , xL
2 ) case of He and Tawarmalani [19, Thm. 1] (Theorem 2.1). For (a1, a2) =

(xL
1 , xU

2 ), we have

E2(·) = (xU
1 −xL

1 )u2(·)+xU
2 x1(·)+xL

1 x2(·)−xU
1 xU

2 ,

E3(·) = xL
2 x1(·)+xL

1 x2(·)−xL
2 xL

1 ,

with E4(·) = E2(·) and E5(·) = E3(·) = E1(·). Moreover, (xU
1 − xL

1 )u2(·) ≤ (xU
1 − xL

1 )x2(·)
and E2(·) ≤ xU

1 x2(·)+xU
2 x1(·)−xU

1 xU
2 = E6(·). ⊓⊔

Clearly, nontrivial lower and upper bounds must be available if relaxations of this
form are expected to improve on the McCormick composition approach. In the
next section, we propose three computational approaches to achieving this. In the
remainder of this section, we detail associated rules for propagating valid subgra-
dients of the convex/concave relaxations that are necessary when forming affine
relaxations or as an input to nonsmooth convex NLP solvers.

Definition 3.1 (ω,Ω) Let a ∈R, σ1,σ2 ∈Rn . The functions ω,Ω : R×Rn ×Rn →Rn

are defined as

ω(a,σ1,σ2) ≡
{

aσ1 a ≥ 0,

aσ2 otherwise,

Ω(a,σ1,σ2) ≡
{

aσ1 a ≤ 0,

aσ2 otherwise.

Theorem 3.4 Let Z ⊂ Rn be a nonempty convex set and w, x1, x2 : Z → R such that
w(· ) = x1(· )x2(· ) with corresponding convex/convex relaxations xcv

1 , xcc
1 , xcv

2 , xcc
2 :

Z → R on Z . Let u1,u2 : Z ⊂ Rn → R be underestimators and o1,o2 : Z → R be over-
estimators of x1, x2 on Z , respectively. Let (a1, a2), (b1,b2) ∈ X1 × X2 ∈ IR2 such that
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xL
1 ≤ u1(·) ≤ min{x1(·), a1}, max{x1(·),b1} ≤ o1(·) ≤ xU

1 , xL
2 ≤ u2(·) ≤ min{x2(·), a2},

and max{x2(·),b2} ≤ o2(·) ≤ xU
2 . Let wcv

i (·) and wcc
i (·) on Z be defined as in Theo-

rem 3.1 and Theorem 3.2. Then, subgradients scv
wi

(z̄),scc
wi

(z̄) of wcv
i and wcc

i on Z ,
evaluated at z̄ ∈ Z , for i = 1, . . . ,8, are given by

scv
w1

(z̄) = (xU
2 −a2)scv

u1
(z̄)+ (xU

1 −a1)scv
u2

(z̄)+ω
(
a2,scv

x1
(z̄),scc

x1
(z̄)

)
+ω

(
a1,scv

x2
(z̄),scc

x2
(z̄)

)
,

scv
w2

(z̄) = (xU
2 −xL

2 )scv
u1

(z̄)+ω
(
xL

2 ,scv
x1

(z̄),scc
x1

(z̄)
)+ω

(
a1,scv

x2
(z̄),scc

x2
(z̄)

)
,

scv
w3

(z̄) = (xU
1 −xL

1 )scv
u2

(z̄)+ω
(
a2,scv

x1
(z̄),scv

x1
(z̄)

)+ω
(
xL

1 ,scv
x2

(z̄),scv
x2

(z̄)
)

,

scv
w4

(z̄) = (a2 −xL
2 )scv

u1
(z̄)+ (a1 −xL

1 )scv
u2

(z̄)+ω
(
xL

2 ,scv
x1

(z̄),scc
x1

(z̄)
)

+ω
(
xL

1 ,scv
x2

(z̄),scc
x2

(z̄)
)

,

scv
w5

(z̄) = (xL
2 −b2)scc

o1
(z̄)+ (xL

1 −b1)scc
o2

(z̄)+ω
(
b2,scv

x1
(z̄),scc

x1
(z̄)

)
+ω

(
xU

1 ,scv
x2

(z̄),scc
x2

(z̄)
)

,

scv
w6

(z̄) = (xL
2 −xU

2 )scc
o1

(z̄)+ω
(
xU

2 ,scv
x1

(z̄),scc
x1

(z̄)
)+ω

(
b1,scv

x2
(z̄),scc

x2
(z̄)

)
,

scv
w7

(z̄) = (xL
1 −xU

1 )scc
o2

(z̄)+ω
(
b2,scv

x1
(z̄),scc

x1
(z̄)

)+ω
(
xU

1 ,scv
x2

(z̄),scc
x2

(z̄)
)

,

scv
w8

(z̄) = (b2 −xU
2 )scc

o1
(z̄)+ (b1 −xU

1 )scc
o2

(z̄)+ω
(
xU

2 ,scv
x1

(z̄),scc
x1

(z̄)
)

+ω
(
xU

1 ,scv
x2

(z̄),scc
x2

(z̄)
)

,

and

scc
w1

(z̄) = (xL
2 −a2)scv

u1
(z̄)+ (a1 −xU

1 )scv
u2

(z̄)+Ω
(
a2, xcv

1 (z̄), xcc
1 (z̄)

)
+Ω

(
xU

1 , xcv
2 (z̄), xcc

2 (z̄)
)

,

scc
w2

(z̄) = (xL
2 −xU

2 )scv
u1

(z̄)+Ω
(
a1,scv

x2
(z̄),scc

x2
(z̄)

)+Ω
(
xU

2 ,scv
x1

(z̄),scc
x1

(z̄)
)

,

scc
w3

(z̄) = (xL
1 −xU

1 )scv
u2

(z̄)+Ω
(
a2,scv

x1
(z̄),scc

x1
(z̄)

)+Ω
(
xU

1 ,scv
x2

(z̄),scc
x2

(z̄)
)

,

scc
w4

(z̄) = (a2 −xU
2 )scv

u1
(z̄)+ (xL

1 −a1)scv
u2

(z̄)+Ω
(
xU

2 ,scv
x1

(z̄),scc
x1

(z̄)
)

+Ω
(
a1,scv

x2
(z̄),scc

x2
(z̄)

)
,

scc
w5

(z̄) = (xU
2 −b2)scc

o1
(z̄)+ (b1 −xL

1 )scc
o2

(z̄)+Ω
(
b2,scv

x1
(z̄),scc

x1
(z̄)

)
+Ω

(
xL

1 ,scv
x2

(z̄),scc
x2

(z̄)
)

,

scc
w6

(z̄) = (xU
2 −xL

2 )scc
o1

(z̄)+Ω
(
b1,scv

x2
(z̄),scc

x2
(z̄)

)+Ω
(
xL

2 ,scv
x1

(z̄),scc
x1

(z̄)
)

,

scc
w7

(z̄) = (xU
1 −xL

1 )scc
o2

(z̄)+Ω
(
b2,scv

x1
(z̄),scc

x1
(z̄)

)+Ω
(
xL

1 ,scv
x2

(z̄),scc
x2

(z̄)
)

,

scc
w8

(z̄) = (b2 −xL
2 )scc

o1
(z̄)+ (xU

1 −b1)scc
o2

(z̄)+Ω
(
xL

2 ,scv
x1

(z̄),scc
x1

(z̄)
)

+Ω
(
b1,scv

x2
(z̄),scc

x2
(z̄)

)
,

where scv
x1

, scc
x1

, scv
x2

, scc
x2

, scv
u1

, scc
u1

, scv
u2

, scc
u2

, scv
o1

, scc
o1

, scv
o2

, scc
o2

are, respectively, subgradi-
ents of xcv

1 , xcc
1 , xcv

2 , xcc
2 ,ucv

1 , ucc
1 , ucv

2 , ucc
2 , ocv

1 , occ
1 , ocv

2 , occ
2 on Z . Further, let qmax ∈
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argmax
{

wcv
1 (z̄), . . . , wcv

8 (z̄), wU
}

and qmi n ∈ argmin
{

wcc
1 (z̄), . . . , wcc

8 (z̄), wL
}
, then

scv
w (z̄) =

{
scv

wqmi n
(z̄), if 1 ≤ qmi n ≤ 8,

0, otherwise,

and

scc
w (z̄) =

{
scc

wqmax
(z̄), if 1 ≤ qmax ≤ 8,

0, otherwise.

Proof The proof follows from the construction of the relaxations in Theorem 3.3.
The functions defined in Definition 3.1 select subgradients that respect the rules
for scalar multiplication of relaxations [32]. For each equation (21)-(28), the sub-
gradients are then summed using the standard additive relationship [32,21]. ⊓⊔

4 Computability of Tight Composite Relaxations of Bilinear Terms

In this section, we describe three approaches to compute the requisite a priori
relaxations in a reduced-space McCormick relaxation context.

4.1 Composite Convex/Concave Relaxations based on Under/Overestimators

For low-dimensional expressions (i.e., n ∼ 1), we may exploit the properties of con-
vex/concave functions. Convex/concave relaxations of the arguments of the bilin-
ear expression may be used as the valid a priori relaxations. As illustrated in a sub-
sequent example, if the a1, a2,b1,b2 values are selected judiciously, then this may
lead to nontrivial affine relaxations and, in turn, improved relaxations of the bilin-
ear term in reduced-space. The constants a1 and a2 can be selected by maximizing
convex functions xcv

1 (·) and xcv
2 (·) on a convex polyhedron P = conv(ν1,ν2, . . . ,νk ),

with νi vertices. It is well-known that the extremal value will be achieved at a ver-
tex, i.e., maxz∈P f (z) = maxi f (νi ). Similarly, we may compute b1, b2 by minimizing
the concave functions xcc

1 (·) and xcc
2 (·). This is in itself a series of nonconvex opti-

mization problems. While specialized algorithms may exist to address this class of
problems (e.g., [15,4]), it is reasonable to conclude that this approach is too com-
putationally expensive to be practical, as two nonsmooth concave optimization
problems must be solved for each intermediate bilinear term in order to evaluate
relaxations of the nonlinear function.

In the case of low-dimensional expressions, we may simply compute convex/-
concave relaxations at each vertex and solve each optimization problem via enu-
meration. In many cases, the evaluation of relaxations is often much less time in-
tensive than other routines, such as solving a series of linear programs in optimization-
based bounds tightening [50], or solving a nonlinear program in order to furnish
valid upper bounds within a branch-and-bound routine for deterministic global
optimization [22]. One may intuit that this method will yield a tighter relaxation of
the bilinear term than using a weaker a priori relaxation. As it turns out, this is in
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fact false, and the use of a weaker a priori relaxation may lead to tighter relaxations
of the bilinear term owing to the dependence of the relaxations of Theorem 3.3 on
a1, a2, b1, and b2. A counterexample is provided in Example 4.1 and illustrated in
Figure 1. In the subsequent section, a less computationally expensive method is
developed that may provide comparably tight bounds.

4.2 Improved Relaxations Using Subgradient-Based Under/Overestimators

In addition to the composite bilinear relaxation theory outlined herein, the use of
a priori relaxations to refine the relaxations of a univariate factor can be accom-
plished via Proposition 4.1.

Proposition 4.1 Let vk : Z ⊂ Rn → V be a cumulative mapping. Let vcv
k,a /vcc

k,a be
convex/concave relaxations of vk on Z , and suppose we have additional convex/-
concave relaxations vcv

k,b /vcc
k,b of vk on Z . Then,

vcv
k (·) := max

{
vcv

k,a(·), vcv
k,b(·)

}
,

vcc
k (·) := min

{
vcc

k,a(·), vcc
k,b(·)

}
,

are convex and concave relaxations of vk on Z , respectively.

The subgradients associated with Proposition 4.1 are then simply the subgradients
of the argument returned. In Proposition 4.2, we note that, provided with convex/-
concave relaxations of a factor at a particular point z̄ ∈ Z along with associated
subgradients, then new affine relaxations may be derived.

Proposition 4.2 Let vk : Z ⊂Rn →V be a cumulative mapping. Let vcv
k /vcc

k be con-
vex/concave relaxations of vk on Z and their respective subgradients scv

vk
(z̄), scc

vk
(z̄)

computed at z = z̄ ∈ Z . The functions ξ,ζ : Z → R are the affine relaxations of the
convex and concave relaxations of vk on Z , respectively:

ξ(z) ≡ vcv
k (z̄)+scv

vk
(z̄)T(z− z̄), (29)

ζ(z) ≡ vcc
k (z̄)+scc

vk
(z̄)T(z− z̄). (30)

As noted in [44], interval extensions of (29) and (30) can be used to derive valid up-
per bounds of the factor and subsequently refine the associated interval bounds.
We propose using this result as follows. Using a priori relaxations, refined relax-
ations of composite factors, and their subgradients, are calculated via Proposi-
tion 4.1. These are then used to construct affine relaxations via Proposition 4.2.
Natural interval extensions of (29) and (30) are then used to define valid a1, a2,b1,b2

terms for these affine relaxations, which are then used for the direct application of
Theorem 3.3 for improved relaxations of composite bilinear terms.

The following numerical example is provided to illustrate the results of apply-
ing Theorem 3.3 and Theorem 3.4 using the methods of Section 4.1 and Section 4.2
versus the previously established McCormick-based approaches.
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Example 4.1 Consider the function f : Z →R, with Z = [−0.5,1], defined as

f (z) = (
z − z2)(z3 −exp(z)

)
.

As illustrated in Figure 1, a priori affine relaxations constructed at a single refer-
ence point z̄ = 0.25 yield similar relaxations to the direct enumeration approach.
Note that in this example, neither approach yields relaxations that are a strict im-
provement over the other for the entire domain.

Fig. 1 Relaxations of f (z) = (z − z2)(z3 − exp(z)) ( ) on Z = [−0.5,1], are constructed using exist-
ing approaches and compared with approaches developed in this paper. Relaxations computed us-
ing a priori subgradients at z̄ = 0.25 ( ) lead to tighter relaxations than the use of ( ) standard and ( )
multivariate McCormick relaxation strategies. This occurs when (top-left) subgradients are only used
as a priori relaxations and (top-right) when the subgradients are used to refine the interval bounds
of each factor [44]. (bottom-left) The a priori relaxations constructed by computing the maxima and
minima of the operands’ relaxations ( ) also lead to an improvement over standard and multivariate
McCormick relaxations. (bottom-right) Marginal additional improvement over standard and multi-
variate McCormick relaxations may be observed when using the subgradient method to refine interval
bounds of each factor [44].
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4.3 Affine Arithmetic

Affine arithmetic has been proposed as an alternative set-valued arithmetic to in-
terval arithmetic. In this approach, an affine representation of a function is con-
structed. In the case of affine functions, this representation is exact. For nonlin-
ear terms, the enclosure is linearized and some overestimation necessarily occurs.
Two common choices of linearization techniques include minimizing the range of
the enclosure or minimizing the maximum width of enclosure, which is the Cheby-
shev approximation [53]. In the original description of affine arithmetic [12] and
the later introductory papers [64,17], computations began with an affine repre-
sentation of each term and an additional noise term was added for every nonlinear
term introduced. This approach introduced significant computational complexity.
In this work, we will instead address the use of two simplified forms of affine arith-
metic that were proposed by [28]. In each of these forms, the intermediate term
vk (z) ∈ ṽ0 +∑n

i=1 ṽi z+Rk is represented by a linear function with a small remain-
der Rk that encloses truncation error [45]. The first affine form AF1 uses a single
component to represent the Rk truncation error.

Definition 4.1 (AF1) The affine form AF1 is defined as

v̂ = v0 +
n∑

i=1
vi ϵi + vn+1ϵ±,

where ϵi ∈ [−1,1], vi ∈R for i = 1, . . .n +1, ϵ± ∈ [−1,1], and v0 ∈R

In addition to this form, [28] discussed the use of a second affine form AF2 that
uses separate components to represent positive truncation error, negative trunca-
tion error, and mixed-sign truncation error. This distinction leads to tighter enclo-
sures of certain operators.

Definition 4.2 (AF2) The affine form AF2 is defined as

v̂ = v0 +
n∑

i=1
vi ϵi + vn+1ϵ±+ vn+2ϵ++ vn+3ϵ−,

where vi ∈ R for i = 1, . . .n + 3, ϵi ∈ [−1,1] for i = 1, . . .n, ϵ± ∈ [−1,1], ϵ+ ∈ [0,1],
ϵ− ∈ [−1,0], and v0 ∈R

Each affine form definition implies the existence of affine relaxations as de-
scribed by [46]. We proceed to state the corresponding relaxations in Proposition 4.3
(adapted from [46, Prop. 2]) and Proposition 4.4 (adapted from [46, Prop. 3]). Next,
note that components ϵi may be expressed as simple nondimensionalized forms
of the decision variables as ϵi (zi ), and can be converted to the dimensional form
using the following equation:

ϵi (zi ) = (zi −mid(Zi ))/rad(Zi ).
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Proposition 4.3 (Affine Relaxation from AF1) Let v : Z → V be a factor with an
affine form as in Definition 4.1. Then vcv

AF 1, vcc
AF 1 : Z →V defined as

vcv
AF 1(z) = v0 +

n∑
i=1

vi ϵi (zi )− vn+1, (31)

vcc
AF 1(z) = v0 +

n∑
i=1

vi ϵi (zi )+ vn+1, (32)

are affine relaxations of v at z ∈ Z .

Proposition 4.4 (Affine Relaxation from AF2) Let v : Z → V be a factor with an
affine form as in Definition 4.2. Then vcv

AF 2, vcc
AF 2 : Z →V defined as

vcv
AF 2(z) = v0 +

n∑
i=1

vi ϵi (zi )− vn+1 − vn+2 − vn+3, (33)

vcc
AF 2(z) = v0 +

n∑
i=1

vi ϵi (zi )+ vn+1 + vn+2 + vn+3, (34)

are affine relaxations of v at z ∈ Z .

The extrema of (31)-(34) on Z can be readily computed via natural interval ex-
tensions. We note that this operation is no more complicated than converting the
affine representation to an interval form. As illustrated in Example 4.2, the use of a
priori information propagated through affine forms may yield tighter relaxations
than simply using interval bounds calculated via affine arithmetic.

Example 4.2 Consider the function f : X ×Y →R defined as

z = f (x, y) = (x2 −x)(y2 − y),

on the domain X ×Y = [0.1,1.9]2. We compute convex and concave relaxations of
this function using four distinct approaches: 1) standard McCormick arithmetic,
2) affine arithmetic of style AF1, 3) the tightest relaxations available using AF1
or standard multiplication rules, and 4) relaxations generated using approach 3),
where the relaxations of the bilinear operator are computed using Theorem 3.1
through Theorem 3.3. The results are illustrated in Figure 2. It is clear that the re-
laxations computed using approach 3) outperform both approaches 1) and 2), and
4) further tightens the relaxations obtained by approach 3).

5 Benchmark Results

All numerical experiments in this work were run on a single thread of an Intel Xeon
E3-1270 v5 3.60/4.00GHz (base/turbo) processor with 16GB ECC RAM allocated to
a virtual machine running the Ubuntu 18.04LTS operating system and Julia v1.6
[5]. Absolute and relative convergence tolerances for the B&B algorithm of 10−4

were specified for all example problems, unless otherwise noted. EAGO.jl v0.7.0



Improved convex and concave relaxations of composite bilinear forms⋆ 19

Fig. 2 The function z = (x2 − x)(y2 − y) ( ) is plotted along with its corresponding convex and con-
cave relaxations ( ) on X ×Y = [0.1,1.9]. (top-left) A standard McCormick relaxation approach is
contrasted with (top-right) relaxations constructed by affine arithmetic using AF1. (bottom-left) The
use of composite relaxations formed by intersecting affine enclosures with standard McCormick re-
laxations is compared to (bottom-right) the relaxations constructed by the use of a priori bounds per
Theorem 3.1 through Theorem 3.3 to tighten composite relaxations. We note that AF2 did not yield
appreciably different results from AF1, so it was omitted from the plot.

[74] was used to solve each optimization problem. Relaxations of intrinsic func-
tions have been implemented in the openly-available McCormick.jl [72] subpack-
age of EAGO.jl. EAGO’s approach to solve lower-bounding problems is to construct
linear programming relaxations of the corresponding nonsmooth relaxed prob-
lems, which are then solved using the GLPK solver, by default. BARON v21.1.13 [66,
55] was used for performance comparisons. The Intel MKL (2019 Update 2) [16]
was used to perform all LAPACK [1,69] and BLAS [6] routines. The data used with
and generated from the following numerical examples are openly available in the
following Git repository https://github.com/PSORLab/RSBilinear along with
the corresponding problem formulations. For comparison purposes, three config-
urations were explored: EAGO the standard configuration for the EAGO optimizer;
EAGO Sub denotes the use of subgradient-based a priori relaxations; and EAGO

https://github.com/PSORLab/RSBilinear
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Aff denotes the use of AF1 affine-arithmetic and associated a priori relaxations.
Interval bounds implied by interval extensions using the subgradient as well as in-
terval bounds computed using affine arithmetic are used to refine interval bounds
of each factor computed. The enumerative approach detailed in Section 4.1 is ex-
plicitly excluded from consideration as it is not a practical approach for even mod-
erately sized problems due to the high computational complexity. A randomly gen-
erated benchmark library adapted from He and Tawarmalani [19, Ex. 5] was used
to assess the performance of each approach. Each instance takes the form given
by

min
x

cTx+∑
i

∑
j

qi j yi j

s.t. x ∈ [−1,1]n

u = (x2
1 −x1, x3

1 −x1, x4
1 −x1, . . . , x2

n −xn , x3
n −xn , x4

n −xn)

Y = uuT,

where qi j are elements of Q ∈Rn×n ; a strictly upper-triangular matrix with density
of nonzero elements given by χ. A set of 200 instances was randomly generated
with χ ∈ [0.3,0.5,0.7], n ∈ [10,15,20] and c ∈ [−512,−2]n randomly selected from a
uniform distribution. Each instance was then solved for each solver configuration.
A 5-minute (300 s) CPU time limit was enforced for each instance. Solver perfor-
mance was assessed using the shifted geometric mean time. A performance pro-
file was generated for comparison using the methodology of Dolan and Moré [14].
The performance of a solver configuration s is set to the solution time tp,s in CPU
seconds (single-threaded) for problem p. The performance ratio of problem p by
solver s is then the ratio of solver s performance to the best solver performance in
the set:

rp,s =
tp,s

min{tp,s : s ∈ S}
.

This performance profile of solver s on a benchmark set depicts the cumulative
distribution function of the performance metric ρs (τ); which is the probability that
a performance ratio rp,s is within τ ∈R of the best possible ratio

ρs (τ) = 1

np
size{p ∈I : rp,s ≤ τ},

where I is the set of problems with np = card(I ). A plot comparing rs for each
configuration s ∈ S then illustrates the relative performance of each solver.

First, we note that based on the performance data available in Table 1 and Ta-
ble 2 and the profiles in Figure 3, all configurations of EAGO significantly under-
perform BARON in this benchmark. This result is to be expected as the benchmark
set is a polynomial optimization problem that may be reformulated as a higher-
dimensional nonconvex quadratic program. Provided that this reformulation oc-
curs, BARON may implement any number of specialized approaches [2,3,77,48,
47] that currently have no analog for reduced-space optimization approaches. How-
ever, as discussed previously, these approaches cannot be readily applied to reduced-
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Solver Configuration Solved Unsolved

BARON 200 (100.0%) 0 (0.0%)
EAGO 136 (68.0%) 64 (32.0%)

EAGO Aff 127 (63.5%) 73 (36.5%)
EAGO Sub 183 (91.5%) 17 (8.5%)

Table 1 The number of benchmark problems solved within 5 minutes by solver configuration are tab-
ulated. BARON readily solves all problems likely due to it efficiency in decomposing the problem to a
higher-dimensional quadratic form and then applying specialized methods that EAGO currently lacks.
However, EAGO Sub substantially increases the number of problems solved within the time limit rela-
tive to EAGO while the use of affine arithmetic EAGO Aff is associated with decreased performance.

Solver Configuration τ δr el

BARON 0.69 N/A
EAGO 40.7 3.8×10−2

EAGO Aff 52.4 4.6×10−2

EAGO Sub 13.7 1.2×10−2

Table 2 The shifted geometric mean τ of solve times t1, t2, . . . , tn defined by τ= (
∏n

i=1(ti +s))1/n −s are
given by solver configuration with s = 1 along with the average relative gap remaining for any problems
not solved within the 5-minute time limit. For problems that terminate due to the specified time limit,
the relative gap remaining can be compared to assess solver performance. The relative gap remaining
is given by δr el = (|U | − |L|)/max(|U |, |L|) where |U | is the upper bound (best feasible objective value)
and |L| is the lower bound. EAGO Sub substantially reduces τ and δr el relative to EAGO, whereas EAGO
Aff shows an increase in these metrics over EAGO.

space applications for which the problem does not have a factorable representa-
tion.

Next, we observe that the configuration EAGO Sub reduces the shifted geo-
metric mean run time relative to EAGO by a factor of 3, increasing the number of
problems solved within 5 minutes by 23.5%, as indicated by the data in Table 1
and Table 2. Interestingly, configuration EAGO Aff apparently increases the mean
solve time relative to the standard configuration EAGO as the increased time spent
performing affine arithmetic calculations offsets any potential benefit from reduc-
ing overestimation that occurs in the relaxed problem. As subgradients are already
calculated when computing relaxations in configuration EAGO, the use of subgra-
dients to tighten the composite relaxation of the bilinear term in configuration
EAGO Sub does not substantially increase calculation time.

6 Case Studies

We now examine how the proposed relaxations may be applied to two separate
case studies. In the first, bilinear compositions are introduced through the sequen-
tial use of response surface models. In the second case, bilinear terms appear in
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Fig. 3 As illustrated by the performance profiles shown for each solver configuration, computing re-
laxations using the a priori relaxation based on subgradients leads to a substantial decrease in CPU
solution time for a typical problem within the benchmark set when compared the naïve McCormick ap-
proach implemented in EAGO. The horizontal line plot for BARON indicates that it uniformly provides
substantially faster run times due to it decomposing the benchmark problems into higher-dimensional
quadratic forms and applying specialized methods.

the governing equations of a dynamic optimization problem, which are repeatedly
composed at each time step.

6.1 Process Optimization Through Sequential Response Surface Methodology

Response surface methodology (RSM) is one of the most common statistical ap-
proaches used in industrial applications for creating predictive models of compli-
cated processes [13]. In RSM, quadratic models of the form:

y = a +cTx+ 1
2 xTQx,

are used to approximate the behavior of a system (i.e., the response variable) as
a function of the input or dependent variables. These models are particularly ap-
pealing when first-principles process models are highly complex but variation in
process outputs with respect to control variables behave in a predictable manner.
Applications of RSMs span a wide range with examples including machining via
abrasive waterjet turning [76], Nd:YAG laser drilling [52], electron beam welding
[35] plasma spray coating [49], and diffusion bonding of alloys [51]. While these
models are ubiquitous, the use of these models in optimal design problems read-
ily leads to nonconvex problem formulations due to the presence of bilinear terms.
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Stage 1

Process 1

Process 2

Process 3

Stage 3

Stage 2

Fig. 4 An illustration of the three-stage machining process considered in Section 6.1, consisting of
(Stage 1) initial shaft machining process, (Stage 2) followed by one of three different roughing pro-
cesses, and then (Stage 3) processing in a final surface finishing step. The parameters c1,c2 represent
the initial diameter and roundness, respectively. The feed rate x1, cut depth x2, rougher rate x3, and
finish rate x4 comprise the continuous decision variable vector x, whereas the binary decision variable
vector z specifies the machine type (i.e., Process 1 through 3). The specification of these variables de-

termines the output diameter y (1)
1 , output roundness y (1)

2 , and process time y (1)
3 of Stage 1; the output

diameter y (2)
1 and process time y (2)

2 of Stage 2; and the final diameter y (3)
1 and process time y (3)

2 of Stage
3.

One particularly interesting area of application for RSMs lies in the quality chain
design of multistage manufacturing systems [20]. Here we revisit the numerical
example that was previously addressed in [20] using local and stochastic methods.
We will show that this model form may be readily addressed using reduced-space
global optimization and solved to a certificate of ϵ-global optimality using a sim-
plified set of RSM models generated from the original data provided in [20].

The manufacturing process is illustrated in Figure 4 and consists of an initial
shaft machining (Stage 1) in which the output diameter y (1)

1 , output roundness

y (1)
2 , and process time y (1)

3 are determined by feed rate x1, cut depth x2, initial di-
ameter c1, and roundness c2 of the shaft bought from a supplier. This step is fol-
lowed by a rough machining process (Stage 2) wherein rougher rate x3, the part
diameter, and machine type specified by binary decision variables z = (z1, z2) ∈
Z = {0,1}2 determine the output diameter y (2)

1 and process time y (2)
2 . The process

concludes with finish machining (Stage 3) in which finish rate x4 is adjusted to de-
termine final diameter y (3)

1 and process time y (3)
2 . Machine operating parameters

and a nominal roundness specification may then be varied to specify the process,
forming the continuous decision variable vector x = (x1, x2, x3, x4). Each process
step relates inputs and operating parameters to outputs by means of the RSM,
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given by

ŷ (1)
1 (x) = 3.55+0.27c1 +0.58c2 +60.6x2 −2.8c1x2 −2.3c2x2

ŷ (2)
1 (x,z) = 126586.5−21466.8ŷ (1)

1 (x)+520.43x3 +56.29z1 +315.95z2,

−43.72x3 ŷ (1)
1 (x)+3.74x2

3 +910.1ŷ (1)
1 (x)2

−30.6ŷ (1)
1 (x)z1 −173.17ŷ (1)

1 (x)z2,

ŷ (3)
1 (x,z) = 9.16+0.092x3 +0.73x4 +0.64x3x4 −0.49x2

4 −0.13x4 ŷ (2)
1 (x,z)

+0.0019ŷ (2)
1 (x,z)2 +0.018ŷ (2)

1 (x,z),

where the hat on the y variables signify the RSM surrogate that predicts the value
of the corresponding process output (i.e., ŷ (1)

1 is the surrogate for predicting y (1)
1 ).

The original work [20] was principally concerned with minimizing the varia-
tion in y(3). We instead consider the problem of identifying a nominal process in
which the value of y (3)

1 is close to the desired value of η = 5. This is motivated by
balancing a maximal process capability index (CpK) with respect to the final di-
ameter setpoint and the desire for just-in-time completion of the process. As such,
the design decision may be posed as the following reduced-space optimization
problem:

f ∗ = min
x∈X ,z∈Z

(
ŷ (3)

1 (x,z)−η
)2

s.t. z1 + z2 ≤ 1

X = [7,10]× [0.1,0.3]× [−1.078,1.078]× [−1.078,1.078]

c1 = 0.001, c2 = 0.03

We then proceed to solve this problem in EAGO as well as using relaxation-
based a priori relaxations for nonlinear terms EAGO Relax, subgradient-based a
priori relaxations EAGO Sub, and an affine arithmetic a priori relaxation EAGO
Aff. A solve time of 26.3 seconds is required for EAGO to furnish a solution, while a
longer solve time of 47.6 seconds is required for the EAGO Aff method. The relaxation-
based a priori relaxations for nonlinear terms EAGO Relax leads to a slightly faster
run time of 25.5 seconds, while EAGO Sub yields a significantly faster run time of
7.1 seconds.

6.2 Kinetic Parameter Estimation

The a priori relaxation methods presented here can readily be applied to dynamic
optimization problems as well. We demonstrate this using an adaption of a kinetic
parameter estimation problem [63,32]. The reaction mechanism is described by
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the ordinary differential equation initial value problem (ODE-IVP):

d xA

d t
= k1xZ xY − cO2 (k2 f +k3 f )xA + k2 f

K2
xD + k3 f

K3
xB −k5x2

A ,

d xB

d t
= cO2 k3 f xA −

(
k3 f

K3
+k4

)
xB ,

d xZ

d t
=−k1xZ xY ,

d xD

d t
= cO2 k2 f xA − k2 f

K2
xD ,

d xY

d t
=−k1s xZ xY ,

xA(0) = 0, xB (0) = 0, xD (0) = 0, xY (0) = 0.4, xZ (0) = 140,

where x j is the concentration of species j ∈ {A,B ,D,Y , Z } and the constants are
given by T = 273, K2 = 46exp(6500/T −18), K3 = 2K2, k1 = 53, k1s = k1 ×10−6, k5 =
1.2×10−3, and cO2 = 2×10−3. A least-squares fit is sought to fit available intensity
and time data that exhibit a known dependency on the concentration, that is, I =
xA + 2

21 xB + 2
21 xD [63]. The reaction rate constants k2 f ∈ [10,1200], k3 f ∈ [10,1200],

and k4 ∈ [0.001,40] are the decision variables p = (k2 f ,k3 f ,k4).

We consider an explicit Euler discretization of the problem [32] for simplicity.
A semi-explicit approach is used in which the relaxations of state variables x in the
ODE-IVP are computed. A discretization consisting of 50 steps is sufficient for a
high degree of accuracy for this problem on the time domain t ∈ [0,0.5]. We note
that a smaller time domain than the original t ∈ [0,2.0] is considered to ensure
convergence to the 10−4 tolerance for each method investigated. The discretized
model becomes:

xi+1
A = xi

A +∆t

(
k1xi

Y xi
Z − cO2 (k2 f +k3 f )xi

A + k2 f

K2
xi

D + k3 f

K3
xi

B −k5(xi
A)2

)
,

xi+1
B = xi

B +∆t

(
k3 f cO2 xi
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(
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+k4

)
xi

B

)
,

xi+1
D = xi

D +∆t

(
k2 f cO2 xi

A − k2 f

K2
xi

D

)
,

xi+1
Y = xi

Y +∆t
(
−k1s xi

Y xi
Z

)
,

xi+1
Z = xi

Z +∆t
(
−k1s xi

Y xi
Z

)
,

where i = 0, . . . ,49 and ∆t = 0.01. The objective function is then given by

f (p) =
n∑

i=1

(
I c

i (p)− I d
i

)2
,

where I c
i is the calculated intensity value at time step i from the model and I d

i is
the experimental measurement. We solve this problem with the standard config-
uration EAGO as well as using subgradient-based a priori relaxations with con-
figuration EAGO Sub. Note that configuration EAGO Relax was not considered
for this example due to the problem complexity, similarly to Section 5, and con-
figuration EAGO Aff was not used as it consistently underperformed EAGO in all
previously presented examples. Configuration EAGO solves this problem in 450.0
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Fig. 5 A log-log plot of relative gap remaining ϵr = (U BD −LBD)/max(U BD,LBD) by solver configu-
ration at time t for the kinetic parameter estimation problem in Section 6.2. Solver configuration EAGO
Sub accelerates the rate of convergence to an optimal solution by a factor of 4.76.

seconds and 121,881 iterations whereas configuration EAGO Sub solves this prob-
lem in only 94.5 seconds after 8,905 iterations, as illustrated by the relative gap
convergence plot provided in Figure 5. This illustrates how dynamic optimization
problem structures that introduce a large number of composite bilinear terms may
benefit substantially from the use of the a priori relaxation approach presented
herein.

7 Conclusions

New theory was developed for computing improved relaxations of composite bi-
linear terms when relaxations of a priori underestimators and overestimators are
available. A corresponding result for computing subgradient information was also
detailed herein. Three distinct methods by which the new results may be used
within a generalized McCormick relaxation framework were also described: an
enumeration approach with standard McCormick relaxations; the use of interme-
diate affine relaxations defined by subgradient expansions; and the use of affine
relaxations defined by an affine arithmetic. Two case studies were presented that
illustrate how each method may lead to significantly improved relaxations despite
requiring an approximately 4-fold increase in floating point operations for each
bilinear term relaxed. Lastly, each method was incorporated into a version of the
EAGO global optimizer and the relative performance of each approach was demon-
strated on a small benchmarking test set. In this benchmark set, the subgradient
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expansion reduced the computational time by a factor of three compared to the
standard approach and the other methods presented herein.

Since the improved relaxations developed herein are based upon the McCormick
theory, they can be readily incorporated within other McCormick-based relaxation
methods. First, they may be incorporated into the reverse McCormick relaxations
[71] to tighten relaxations of expressions involving division operators. Direct ex-
tensions to the relaxations of multilinear terms may also be made by expanding
products encountered in derivations of the envelope; then, deriving relaxations of
the resulting under/over estimators in a manner that parallels the derivation de-
tailed in Theorem 3.1 through Theorem 3.3. Alternatively, a recursive method for
generating tighter relaxations of the multilinear term could be implemented using
the improved composite bilinear relaxation defined herein. Lastly, tighter relax-
ations of min/max/mid operators derived using under/overestimators may be of
interest given the significance of these operators in nonsmooth formulations of
refrigeration and heat integration models [70].
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