
Highlights

Technoeconomic Assessment of Solar Technologies for the Hybridiza-
tion of Industrial Process Heat Systems Using Deterministic Global
Dynamic Optimization⋆

Justin Rastinejad, Sloane Putnam, Matthew D. Stuber

� New models are developed for global dynamic optimization of solar
process heat

� Optimal designs are found for three geographic locations and five sys-
tem options

� Parabolic trough collectors outperform PV in both efficiency and eco-
nomics

� Battery electric storage technologies are economically infeasible for pro-
cess heat



Technoeconomic Assessment of Solar Technologies for

the Hybridization of Industrial Process Heat Systems

Using Deterministic Global Dynamic Optimization

Justin Rastinejada,1,∗∗, Sloane Putnama,2,∗∗, Matthew D. Stubera,∗

aProcess Systems and Operations Research Laboratory, Department of Chemical and
Biomolecular Engineering, University of

Connecticut, Storrs, 06269-3222, Connecticut, USA

Abstract

The industrial process heat (IPH) sector provides an opportunity to replace
terawatts of fossil fuel energy with solar alternatives, such as parabolic trough
collectors (PTC) or photovoltaics (PV) with resistive heating and energy
storage (ES) for off-peak deployment. PTCs offer significantly higher ther-
mal efficiency, but have stagnated in cost and efficiency improvements over
the past decade. In contrast, PVs have seen significant improvements in cost
and efficiency. Additionally, the energy generated by PV can be stored elec-
trochemically in batteries. Current optimization-based approaches for design
and investment decision making lack guarantees of global optimality that are
necessary to ensure the best-possible solutions are obtained for these general
nonconvex dynamical models. We present dynamical models for the formal
deterministic global optimization-based design and technoeconomic assess-
ment of solar systems to hybridize IPH and reduce natural gas combustion
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that serve as a general and flexible framework. We compare hybridization
strategies of PTC with thermal ES, PV with thermal ES, and PV with bat-
tery ES and explore the impacts of natural gas pricing and process scale. For
the low- to medium-temperature IPH, PTC with thermal ES is currently at
least four times more economically favorable than alternative technologies
regardless of location or process scale.

Keywords: deterministic global optimization, greenhouse gas reduction,
sustainable manufacturing, decarbonization, solar energy storage, solar
system design
2020 MSC: 90C30, 90C90, 37N40

1. Introduction

1.1. Background and Motivation

To mitigate the effects of climate change, it is imperative to reduce the
dependence of humanity on CO2-emitting processes. In 2019, fossil fuels rep-
resented almost 80% of the energy production of the United States, which
totaled 100 quadrillion BTU (quads) [1]. In 2021, the industrial sector con-
sumed more than 22 quads, with 20.4 quads produced by fossil fuels [2]. The
combined production of solar, wind, geothermal, and hydro technologies only
accounts for 48 trillion BTU; three orders of magnitude less than fossil fu-
els [2]. In the industrial sector, approximately 7.5 quads are consumed for
industrial process heat (IPH) annually [3].

IPH is a diverse category of energy that encompasses the processing and
manufacturing of products under wide-ranging temperature conditions. In
Europe, low temperature IPH (≤100 ◦C) accounted for 30% of the total
IPH energy demand [4]. In the US, 60% of IPH energy demand was below
300 ◦C in 2015 [4, 5]. Industries that use these low temperatures include
food and beverages, textiles, paper and pulp, and plastics [4]. Almost all
of this heat is provided by burning fossil fuels [2]. To reduce our carbon
footprint, researchers have explored more sustainable options. However, the
most economical and practical method has not yet been identified.

To better complement the increasing energy generation from renewable
sources, researchers have begun to explore the electrification of low-temperature
IPH [6]. Electrification of an industry is the process of shifting to electri-
cal energy usage from a nonelectrical source, such as fossil fuels. Globally,
electricity use in industry has risen from 24.8% in 2000 to 28.5% in 2019,
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corresponding to an increase of 40 quads over that time span [7]. Madeddu
et al. [8] explored the feasibility of electrification for IPH in Europe and
identified sectors where it can be feasible. If widely adopted, electrification
could reduce CO2 emissions by 78% by 2050 if the energy sector continues to
decarbonize [8]. Hasanbeigi et al. [5] investigated the electrification potential
of 13 sectors in the US and found that the steel and ammonia industries
have the greatest potential to reduce CO2 emissions if they are electrified.
If these 13 sectors were decarbonized, the authors estimate that emissions
would decrease by 134 million tonnes of CO2 equivalent in 2050 [5].

The electrification of industrial processes also has many benefits for com-
panies. For example, the generation of electricity on site protects companies
from the volatility of natural gas prices [9]. Furthermore, electrified pro-
cesses do not create air pollutants, leading to improved air quality compared
to natural gas processes. Electrically powered heaters have also been shown
to outperform their natural gas counterparts. For example, some electric
boilers have 40% lower capital costs than their natural gas-powered counter-
parts [5]. Electrically powered heaters may also be more thermally efficient
than traditional boilers, as in the case of vapor compression heat pumps [8].

Solar energy generation is expected to expand and improve to meet the
demands of electrification. Photovoltaic (PV) panel production increased
56% every year on average between 2005 and 2012 [10]. In 2020 alone, 15
gigawatts of PV power were installed [11]. The US Solar Energy Technologies
Office (SETO) expects solar PV installation to reach 1 terawatt by 2035,
representing 30-50% of all US energy production [11]. This increase in usage
will encourage additional investment and research, which is expected to drive
the cost of PV energy even lower.

PV technologies have experienced significant price reductions in the last
decade driven by investments from governments and industry [10]. Germany
invested ¿53 billion between 2000 and 2010, and the state of California
invested US$2.16 billion from 2007 to 2016 [10]. These subsidies have worked,
as one study found that the stimulated market represented 60% of the price
reduction [12]. Increased research on production has reduced the cost of PV
energy to a quarter of the price that it was in 2008 [10]. The reduction in
PV prices were driven by an increase in efficiency and a reduction in the cost
of polysilicon [10].

However, this industrial shift towards electrification comes with conse-
quences. Despite recent advocacy for electrification, electricity rates are still
2-14 times higher than natural gas rates [6]. A case study focusing on an oil
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refinery found that electrifying the process is three to four times more ex-
pensive than natural gas alternatives [13]. Furthermore, electrified processes
require new equipment, leading to high upfront costs [9]. The heterogeneity
of IPH requires the creation of different types of heaters, each suited for the
demands of specific processes. This variation removes the ease of production
that would otherwise drive down prices.

On-site solar thermal technologies provide an equally sustainable alter-
native to electrification. Solar thermal technologies are responsible for 7 GW
of global energy generation from almost 100 different sites [14]. Of particu-
lar interest in this study are parabolic trough collectors (PTCs), which use
reflective mirrors to concentrate the sun’s rays to heat a working fluid to
high temperatures. Depending on their size, PTCs can achieve temperatures
up to 400◦C [4, 15, 16]. PTCs require at least 1-axis tracking systems for
continuous operation, typically aligned North-South with East-West track-
ing [15, 16]. The economic feasibility of PTCs for IPH has been thoroughly
investigated [15, 16, 17]. However, due to the significant decrease in nat-
ural gas costs in the last 14 years, much of this technology has stagnated
in development [18]. Despite this, researchers and practitioners agree that
PTCs are economically viable and important technologies for reducing car-
bon emissions in certain IPH sectors.

1.2. Optimization-Based Technoeconomic Assessment of Solar Hybridization

Optimization has been an important tool for analyzing solar thermal en-
ergy system hybridization, and various approaches have emerged in the last
few years. A notable development by Powell et al. [19] focused on hybridiz-
ing fossil fuel energy systems using PTCs coupled to thermal energy storage
(TES) systems. High-fidelity spatiotemporal heat transfer models were em-
ployed to model fluid temperatures in the PTC-TES system under transient
operation [19]. A dynamic optimization problem was formulated to determine
the control of PTC-TES heat transfer fluid flowrates that minimize overall
pumping requirements and supplementary fossil fuel consumption [19]. An
orthogonal collocation numerical integration approach was applied to dis-
cretize the model into algebraic equations, and the optimization problem
was solved to local optimality, presumably with IPOPT [20]. Their find-
ings helped to significantly increase solar utilization on partly cloudy days.
However, their analysis only considered the optimal control of the PTC-TES
system and, as such, accounted for the operating costs/savings and did not
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consider the economic viability of these systems designs with respect to cap-
ital investment [19]. Furthermore, global optimality was not guaranteed.

Allouhi et al. [21] studied the solar hybridization of low-temperature ther-
mal processes with flat-plate collectors with application to milk processing in
Morocco. High-fidelity spatiotemporal heat transfer models were employed
and solved using the TRANSOL simulator. Both the annual lifecycle cost
and annual lifecycle savings were considered in their analysis and the an-
nual lifecycle savings was considered as the economic objective function of
their optimization formulation with tilt angle, aperture area, and storage
capacity as the optimization variables [21]. However, the authors describe a
one-factor-at-a-time procedure for determining a “good” design without any
formal mathematical optimization and, as a result, no guarantees of opti-
mality. Such one-factor-at-a-time approaches are inadequate for investment
decision making involving nonlinear and nonconvex models.

Another low-temperature flat-plate solar thermal system was considered
by Scolan et al. [22] to supply heat as a utility. Since the perspective was
on optimizing operations, high-fidelity dynamical heat transfer models were
considered with spatial dependence in the TES model [22]. Similar to Powell
et al. [19], a formal dynamic optimization approach was applied to determine
the optimal heat transfer fluid flowrates that result in the optimal economics
(overall profit in this case) [22]. The same solution method of Powell et al.
[19] was used, except that the discretized algebraic equations were then im-
plemented in GAMS [23] and solved to local optimality using CONOPT
[24]. Their optimized results reduced electricity consumption by 60% and
increased economic profits by 2% [22].

In 2022, Immonen and Powell [25] continued development of the approach
of Powell et al. [19] to improve controls (applying a hierarchical approach) for
flexible heat integration to provide IPH for two separate processes. A more
detailed high-fidelity spatiotemporal heat transfer model of the PTC-TES
system was used that accounted for the heat exchangers for the two up-
stream IPH systems [25]. A dynamic optimization problem was formulated
with an operational performance-based objective to maximize daily solar en-
ergy utilization with respect to hourly control actions (i.e., heat transfer fluid
flowrates) [25]. Although the focus was on operations, an economic analysis
was also applied using a metric of the levelized cost of heat that accounted for
fixed (linear) capital pricing [25]. A simulation-based approach was applied
to numerically integrate the spatially-discretized dynamical models and the
dynamic optimization problems were solved using the particle-swarm meta-
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heuristic algorithm [25]. As such, the optimization approach is only guaran-
teed to approximate a local minimum in the best case and, in the worst case,
may not converge at all [26].

In 2018, a hybrid solar thermal/natural gas system for IPH was stud-
ied [17] based on dynamic heat flux models. The process considered PTCs
for thermal power generation and gravel-packed bed tanks for TES. A new
dynamic optimization-based design model was developed for more rigorous
technoeconomic analyses and investment decision making with respect to
solar hybridization and accounted for more accurate nonconvex economic
models. In that work, a technoeconomic analysis was conducted for three
disparate locations of the United States and the economic feasibility was as-
sessed based on the power demand and constraints of the system, as well
as the capital costs required [17]. The dynamic optimization problem was
solved to guaranteed global optimality using a novel deterministic global op-
timization approach [17]. However, like the previous dynamic optimization
work in this area, Stuber [17] did not consider alternative solar hybridiza-
tion strategies for IPH, such as electrification approaches, and therefore, the
technoeconomic analyses were limited.

Currently, there are few models that compare the economic feasibility of
PV and resistive heating with concentrating solar thermal for IPH applica-
tions. In 2018, Meyers et al. [27] created a model in TRNSYS to compare
the economic feasibility of solar thermal versus PV technologies. Their anal-
ysis determined that solar thermal energy outperformed PVs for almost all
applications and found the exact prices that needed to be met for the tech-
nologies to become economically viable [27]. However, their analysis did not
include hybridization strategies and instead focused on the energy price par-
ity metric. Thus, their system only used solar power and could not consider
variable-demand profiles and optimal system sizing. Mousa et al. [28] used
TRNSYS and explored the optimal sizes of systems hybridized with natural
gas, PTCs, and PVs for various global locations. Their results found that
combining PVs with PTCs could dramatically improve the levelized cost of
energy over only using PTCs, which highlights the viability of PVs for the
production of IPH [28].

While TRNSYS is a popular and powerful dynamic simulation software
tool used for modeling solar energy systems, it is not capable of deterministic
global optimization. Current optimization techniques for TRNSYS include
data-driven artificial neural network-based approaches, which are computa-
tionally expensive to train, or GenOPT, which is a derivative-free blackbox
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optimizer and as such, cannot guarantee optimality of nonconvex models
[29, 30]. Thus, system designs determined by an optimizer coupled to TRN-
SYS are provided without any certificate of optimality. The authors of this
article argue that rigorous guarantees of optimality are required for invest-
ment decision making.

Based on the modeling approach of Stuber [17], this article proposes new
global dynamic optimization-based design models to perform rigorous tech-
noeconomic analyses of several solar hybridization strategies. Specifically,
we develop PV and electrical energy storage (EES) models. Therefore, this
work establishes new models for assessing the economic feasibility of PVs
with thermal storage or EES. As in [17], these models are specifically de-
veloped for deterministic global optimization approaches to ensure that the
best-possible designs and project economics are determined for each tech-
nology and geographic location; necessary for new technology investment
decision making. In addition to a comparative assessment of PTC and PV
technologies with different storage approaches, we also explore the impacts
of different natural gas rates on the economic feasibility of each technology.

This paper seeks to explore the economic feasibility of solar technology
options to provide low- to medium-temperature IPH using rigorous determin-
istic global optimization. The developed models utilize hybridization with
natural gas to reflect the current state of the IPH sector and its pursuit of
decarbonization. In this paper, the open-source EAGO solver [31] is used to
rigorously solve the proposed design problems to guaranteed global optimal-
ity. This paper is organized as follows: The main development of the models
is provided in §2. Numerical experiments and their corresponding results and
discussion are provided in §3. The paper is concluded in §4.

2. Model Development

This section presents the development of the mathematical models used
for the optimal design and technoeconomic assessment of solar hybrid IPH
systems. This includes the PV solar conversion model (§2.1), the overall solar
hybrid IPH system model (§2.2), the economic models for each technology
(§2.3), and the optimization model (§2.4).

2.1. Model for Photovoltaic Conversion of Irradiance to Electrical Power

In this section, a model is presented for the conversion of incident light
into electrical power via the photovoltaic effect. The power output of a PV
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panel is dependent on intrinsic properties of the panel that include the open
circuit voltage Voc, short circuit current Isc, maximum power voltage Vmp,
maximum power current Imp, temperature coefficient for current αT , and
band gap parameters α, β, and Eg0 [32]. These values are readily available
from the manufacturer and are tabulated in Appendix C for the commer-
cially available SunPower E19-320 module considered in this study. PV power
output is also dependent on external factors, such as sunlight, incident angle,
and temperature. NREL’s National Solar Resource Database (NSRDB) [33]
provides hourly typical meteorological year (TMY) data for temperature, di-
rect normal irradiance (DNI) and diffuse horizontal irradiance (DHI). The
incident angle of DNI is important, but not for DHI since the light is scat-
tered. The incident light on PV panels is calculated based on the DNI, DHI,
and incident angle of the DNI.

The PV model used in this paper follows the work of Sidibba et al. [32]
and Mboumboue and Njomo [34]. The energy output of a PV solar panel
can be modeled using Kirchhoff’s Laws as illustrated in Figure 1. Kirchoff’s

RS

Sunlight
Rsh

Iph

ID Ish

Iout

Figure 1: The circuit diagram of a solar cell shows that the light current, Iph is lowered
by the diode current ID, the shunt current Ish, and series resistance Rs. The PV model
in this work is based on this representation.

Laws yield the following relationship:

Iout = Iph − ID − Ish, (1)

where light current Iph represents the total electrical energy produced be-
tween the p-n junction and is reduced by the current flowing in reverse
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through the diode ID and shunt Ish, and the series resistance Rs. The se-
ries resistance originates as the current moves through the solar cell and the
metal contacts. The shunt current is caused by imperfections in the semi-
conductor material that cause some current to flow in reverse, reducing the
usable current. This model assumes the shunt resistance is very large; thus
Ish = 0 [32].

The underlying equation for the power output P in watts is given by

P =
nNkBTc

q
log

(
1 +

Iph − I

I0

)
RsI

2ϵrϵsϵiϵw. (2)

Calculations to determine Iph, I0, Rs, and n can be found in Appendix D.1
and depend on the intrinsic properties of the PV cell and external factors.
The power output is divided by the area of the panel, which is provided
by the manufacturer and considered to be a design variable herein. Lastly,
inefficiency parameters are incorporated to account for reflection ϵr, soiling
ϵs, inverter ϵi, and wiring ϵw. These values are based on NREL’s System
Advisor Model [35] and can be found in Appendix C.

2.1.1. Tracking Systems

The DNI incident angle must be calculated at each moment in time to
determine the corresponding incident light. The incident light Ee is given by

Ee = Ee,diff + Ee,dir cos(θ), (3)

where Ee,diff is the DHI, Ee,dir is the DNI, and θ is the incident angle. The
incident angle is the angle between the line perpendicular to the PV module
and the incoming DNI, and it changes continuously. The angle changes in
the east-west direction as the Earth rotates during a 24-hour period, and the
angle changes in the north-south direction as the Earth revolves in a 365-day
period. To absorb the maximum amount of sunlight, the PV module must
minimize the incident angle. This can only truly be achieved using a control
system that continuously adjusts the angle of the PV panel throughout the
day/year in both the east-west and north-south directions using an automatic
control system (i.e., two-axis tracking). Such systems are not considered in
this study because of their relative cost and space limitations for large-scale
industrial applications.

Conventional PV arrays that do not have automatic control systems are
called fixed systems, or referred to as zero-axis tracking in this paper. To
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minimize the incident angle of these arrays under the constraint that they
cannot move, angled mount systems are used. For such mounts, the angle
is set to the latitude of the installation with the PV array pointed towards
the equator. The zero-axis tracking model used in this work is taken from
Kalogirou [36] and can be found in Appendix D.3.

Alternatively, a single-axis (or one-axis) tracking PV array is able to
further reduce the incident angle by utilizing a mounting system that fixes
the array angle in one direction and an automatic control system adjusts
the array angle in the other direction. The result is that these systems
receive more sunlight than zero-axis tracking systems because they are able to
further minimize the incident angle throughout the day or year, depending on
the configuration. The one-axis tracking system considered in the proposed
models faces east in the morning and west at night, and is fixed in the
north-south direction. Due to moving parts and automatic control systems,
one-axis tracking arrays cost more than zero-axis systems (see §2.3), but are
less expensive and more suitable for larger-scale industrial applications than
two-axis systems. The one-axis tracking model used in this study is based on
the works of Stuber [17] and Kalogirou [36] and can be found in Appendix
D.4.

2.2. Solar Hybrid Industrial Process Heat System

Our model of solar hybridization of IPH systems considers that the pro-
cess demands can be met by three potential sources: solar collectors, stored
energy, and natural gas. When multiple energy sources are available, the
system must determine which source to prioritize. Solar collector energy is
prioritized first, stored solar energy is second, and then natural gas is used as
the last option. Using energy from the solar collector provides direct power to
the process, circumventing any potential inefficiencies associated with energy
storage. The objective of solar hybridization is to reduce natural gas combus-
tion, yet practical implementations still rely on some natural gas combustion
during overcast or nighttime operations.

There are two classes of solar hybridization that are considered in this
work—PV and PTC. In total, this results in five possible solar module and
storage configurations that will be studied: PV with zero-axis tracking and
TES (PV0-TES) or EES (PV0-EES), PV with one-axis tracking and TES
(PV1-TES) or EES (PV1-EES), and one-axis PTC with TES (PTC-TES).
The model of Stuber [17] is used for PTC and TES, and so the focus of this
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section is on the development of the class of PV systems models. Just as in
[17], the models are developed based on the first law of thermodynamics.

Solar Energy 

Collector (PV)

Electrical

Energy Storage

(EES)

Discharge 

Efficiency Losses

Unutilizable/

Lost Solar

Thermal

Energy Storage 

(TES)

Conventional 

Energy Source

Process Heat 

System (IPH)

Resistive 

Heating

Figure 2: A block-flow diagram of the hybridized PV system is illustrated. Both electrical
energy storage (EES) and thermal energy storage (TES) options are illustrated, but only
one is considered at a time. Red dashed lines are used by EES system, blue dotted lines
are used by TES system, and purple dotted/dashed lines are used by both systems. The
solid black box indicates the boundary of the system for the energy balance. The energy
storage terms q̇es and q̇ts are treated as accumulation terms in the relevant energy balance.

Figure 2 illustrates a block-flow diagram of the PV systems considered
in this work. This diagram condenses the four new systems (not accounting
for PTCs) into one figure with color-coded stylized arrows to denote which
blocks and energy flow terms correspond to which system: purple dash-dot
arrows apply to both TES and EES, blue dotted arrows apply only to TES,
and red dashed arrows apply only to EES. The black box enclosing the energy
storage/dispatching system represents the boundary of the system considered
for the energy balance, i.e., the basis of load balancing control.

Modeling Assumptions. The following simplifying assumptions are made
to model the hybridized solar IPH system, which follow from Stuber [17]:

1. Heat losses to the environment from piping and heat exchangers (in-
cluding resistive heaters) are negligible.

2. Heat losses to the environment from the PTC system are negligible.
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3. Energy losses as a result of the degradation of the EES system over
time are negligible.

4. The process system requires low to medium temperature IPH (i.e., ≤
250◦C).

5. Heat is always available at or above the minimum temperature, as re-
quired by the IPH system.

6. The energy demand of the IPH system is not dependent on the state or
design decisions of the solar energy system.

Since the work of Stuber [17] only considered TES, the EES model is
developed in this section. The boundary considered for the overall energy
balance is centered around the energy dispatching system (black box in Fig-
ure 2). Energy inflows are from the solar energy collector (PV) and con-
ventional energy (natural gas), and energy outflows are to the IPH system,
unutilizable/lost solar energy, and battery discharge efficiency losses. Based
on Figure 2, the hybridized IPH system with PV cells and lithium-ion EES
is represented by the following dynamic energy balance:

q̇s + q̇ng = q̇p + q̇es + q̇lh + q̇lb, (4)

where q̇s is the electrical power provided by the solar system, q̇ng is thermal
power provided by the natural gas heating system, q̇p is the thermal power
demand of the industrial process, q̇es is the instantaneous electrical power
supply/demand of the lithium-ion batteries, q̇lh is the lost solar power due to
meeting the process demand and exceeding the maximum electrical energy
storage capacity, and q̇lb is the lost electrical power due to the round-trip
efficiencies of lithium-ion batteries. The balance (4) implies that the energy
flowing into the system is either from solar or natural gas, and the only way
it can leave is to the process or to the environment in the form of excess or
efficiency losses. Since the EES system charges and discharges with respect
to time and is included within the boundaries of the energy balance, the
storage term q̇es can be thought of as an accumulation term. The convention
chosen here is that if q̇es < 0, the storage system is discharging and q̇es > 0
if the storage system is charging.

It is important to note that in order to model PV configurations with TES,
the overall energy balance of Stuber [17] is used with the q̇s term reflecting
the PV technology developed in §2.1. This is equivalent to (4) with the
battery loss term q̇lb being omitted and q̇es replaced with q̇ts to yield:

q̇s + q̇ng = q̇p + q̇ts + q̇lh. (5)
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The derivation and implications of the load balancing controls of PV-TES
are considered analogous to PTC-TES in Stuber [17], and will therefore not
be covered here. As such, the focus will stay on the EES dynamic energy
balance (4).

As in [17], (4) is rearranged to focus on the storage device as the accu-
mulation term to get the following differential equation:

dqes
dt

= q̇s − q̇p − q̇a − q̇lb, t ∈ [0, tend], (6)

where the ancillary power term q̇a = q̇lh− q̇ng was introduced for convenience
to account for the energy input from natural gas and the unutilizable solar
energy lost.

Using a discrete time stepsize of h = ∆t (1 h for standard solar resource
data) and applying the explicit Euler integration scheme to (6) yields:

qi+1
es = qies + h(q̇is − q̇ip − q̇ia − q̇ilb), q

1
es = 0. (7)

Since the EES has a finite capacity, we can write:

qi+1
es = mid{q̇peakp xes, 0, q

i
es + h(q̇is − q̇ip − q̇ilb)}, (8)

where xes is the storage capacity of the batteries (in h), and q̇peakp is the
maximum IPH demand. The mid(· , · , · ) selects the middle value of its three
arguments to capture the finite capacity of the battery, which ensures that
the storage level never exceeds its maximum capacity or its minimum of zero.

Combining (7) and (8) yields the overall energy balance:

hq̇ia = qies + h(q̇is − q̇ip − qilb)− qi+1
es

= qies + h(q̇is − q̇ip − qilb)−mid{q̇peakp xes, 0, q
i
es + h(q̇is − q̇ip − q̇ilb)}. (9)

Specifically, (9) represents the difference between the total amount of energy
that must be stored/discharged at time i (i.e., q̇ies+h(q̇

i
s−q̇ip)) and the amount

of energy stored in the battery at time i + 1 (i.e., mid{q̇peakp , 0, q̇ies + h(q̇is −
q̇ip− q̇ilb)}). As such, it provides information on the source of energy supplied
to the system at every time step i.

When considering an imperfect energy storage system, there are several
terms that impact performance and load balance accounting. The storage
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model dynamics (both TES and EES) are based on the first law of thermo-
dynamics, and do not consider other complications such as battery degra-
dation over time, or charging conditions/behavior near the maximum and
minimum capacities. This establishes a best-case scenario in terms of solar
energy usage, which is an adequate basis to determine technoeconomic fea-
sibility. Generally speaking, the amount discharged q̇d must be greater than
the amount sent to the IPH system q̇proc, with the excess being lost q̇lb due
to inefficiencies. This is accounted for in this model with the energy balance

q̇id = q̇iproc + q̇ilb. (10)

This balance assumes the case of q̇is < q̇ip and q
i
es > |h(q̇is− q̇ip)| where we have

q̇iproc = q̇ip − q̇is. First, assume that qies is greater than hq̇iproc by a factor of
1/η, where η represents the round-trip efficiency of the battery. In this work,
the definition of conversion round-trip efficiency (i.e., the ratio of energy
discharged per unit of energy charged) provided by Schimpe et al. [37] is
used for the round-trip efficiency η. We can then define:

q̇id =
q̇iproc
η
. (11)

In this case, the losses are naturally expressed as the difference between the
energy that is discharged from the system and the energy that is actually
delivered to the IPH process:

q̇ilb = q̇id − q̇iproc =

(
1− η

η

)
q̇iproc. (12)

Next, consider the other case where q̇ies is not greater than q̇iproc by a factor
of 1/η. Then, we simply calculate the losses based on the remaining capacity
of the battery being discharged: q̇ilb = (1− η)q̇ies. Combining these two cases
gives us the following expression for EES discharging losses:

hq̇ilb =

(
1− η

η

)
mid{ηqies, 0, h(q̇ip − q̇is)}. (13)

This understanding of the EES model aids in providing insight into the
load balancing ancillary power term q̇a. All implications on the value of q̇a
are as follows:
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1. (q̇is > q̇ip) ∧ (qpeakp xes − qies < h(q̇is − q̇ip)) ⇐⇒ q̇ia > 0
Solar power exceeds the IPH demand for this time step and the avail-
able battery capacity is too small to store the full amount of excess
energy,meaning that some energy will be lost due to reaching the max-
imum storage capacity. Therefore, q̇ilb = 0 ∧ q̇ing = 0 ∧ q̇ilh = q̇ia.

2. (q̇is < q̇ip) ∧ (ηqies < |h(q̇is − q̇ip)|) ⇒ q̇ia < 0.
Instantaneous solar power is insufficient to meet the IPH demand, so
the EES will go into a discharging state until the remaining capacity
is drained. At this point, natural gas will be used. Therefore, q̇ilb =
(1− η)q̇ies ∧ q̇ing = −q̇ia ∧ q̇ilh = 0.

3. (q̇is < q̇ip) ∧ (ηqies > |h(q̇is − q̇ip)|) ⇒ q̇ia = 0
Instantaneous solar power does not meet the IPH demand, but the
difference between supply and demand is less than the available stored
energy. Therefore, q̇lb = (1− η)q̇es ∧ q̇ng = 0 ∧ q̇lh = 0

4. (q̇is = q̇ip) ∨
(
(q̇is > q̇ip) ∧ (q̇peakp xes − qies ≥ h(q̇is − q̇ip))

)
⇒ q̇ia = 0

If the solar energy supply and the IPH demand are exactly equal, there
would be no losses and no need for natural gas or energy storage. If
instantaneous solar exceeds the IPH demand and there is enough avail-
able capacity in the battery, the excess will be stored. In both cases,
q̇lb = q̇ng = q̇lh = 0.

Lastly, the performance of the PV-EES system is assessed by the solar
fraction:

SF =

∑
i h(q̇

i
s − q̇ilh − q̇ilb)∑

i hq̇
i
p

= 1−
∑

i hq̇
i
ng∑

i hq̇
i
p

, (14)

where we note that the definition provided in [17] does not account for the
q̇ilb term since EES was not considered in that work. For systems with TES,
(14) will be used with q̇ilb omitted, as in [17].

To demonstrate the behavior of the developed PV and EES models versus
the PTC-TES model of [17] and to illustrate the dynamic energy dispatching,
realistic energy profiles are shown in Figure 3 for a three-day period with an
overlay of the incident light profile (black curve) for the same period. The
profile starts at midnight, and the system is initially powered by energy
stored (red bars) from the previous day. Due to the round-trip efficiency η
that results in losses when discharging, the EES is not able to provide energy
for as many hours as the TES, despite having the same charged capacity. The
first day has clear skies, and the process is almost entirely powered by the
solar system. The second day is cloudy, and as a result, there is less surplus

15



energy generated to charge the storage system. As such, more natural gas is
used (gray-blue bars). On these cloudy days, PVs capture and convert more
light than PTCs because PTCs cannot use diffuse light.
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Figure 3: The energy profiles supplied by a PTC-TES (top) and a PV1-EES (bottom)
system across a three-day period compared to the incident light. Note that the PTC
system has a lower aperture area than the PV system, however, they provide roughly the
same power output. The plots start at midnight, and each day is separated by vertical
dashed gray lines. The system starts using stored energy from the previous day. Early in
the morning, the storage is depleted and the system switches to natural gas. The first day
is very sunny and leads to a high solar fraction. The second and third days are partially
cloudy and rely heavily on natural gas.
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2.3. Economic Models

The relevant economic metrics to consider when assessing the feasibility
of hybridization strategies involve accurate capital cost models for each type
of energy technology: natural gas, PTC, PV with 0-axis tracking, PV with
1-axis tracking, TES, and EES. The PTC and TES cost models used herein
are provided in [17]. They utilize economies of scale using standard power-
law relationships, to account for discounted pricing at bulk quantities. The
cost models of the remaining technologies in this study are regressions of
aggregate data from technical reports published by the National Renewable
Energy Laboratory (NREL) [38, 39, 40, 41, 42]. NREL developed these
reports and datasets based on literature review, the System Advisor Model
(SAM), and manufacturer quotes. NREL PV data was taken from Wood
Mackenzie and the Solar Energy Industries Association (SEIA), which uses
over 200 utilities, state agencies, installers, and manufacturers [38]. From
these data, pre-exponential factors and scaling exponents are developed for
each technology. With the original capital cost model modified for the five
different permutations of technologies, five discount pricing models emerge:

CPTC
cap,0 (xts, xa) = 425x0.92a + 45.14(q̇peakp xts)

0.91, (15)

CPV 0T
cap,0 (xts, xa) = 200.18x0.9617a + 45.14(q̇peakp xts)

0.91, (16)

CPV 0E
cap,0 (xes, xa) = 200.18x0.9617a + 736.38

(
q̇peakp

xes
ψ

)0.9355

, (17)

CPV 1T
cap,0 (xts, xa) = 223.49x0.9586a + 45.14(q̇peakp xts)

0.91, (18)

CPV 1E
cap,0 (xes, xa) = 223.49x0.9586a + 736.38

(
q̇peakp

xes
ψ

)0.9355

, (19)

where the superscripts PTC, PV 0T , PV 0E, PV 1T , and PV 1E correspond
to the technology configurations PTC-TES, PV0-TES, PV0-EES, PV1-TES,
and PV1-EES, respectively.

The design variables are defined as x = (xts, xa) or x = (xes, xa) de-
pending on the technology considered. They represent the size of the energy
storage system in hours (i.e., xts for TES and xes for EES) and the aperture
area of the solar array xa in m2. To simulate the technical performance of the
EES, xes represents the usable battery capacity. Conventionally, the battery
is never 100% charged or completely depleted, so a factor ψ ∈ (0, 1] is intro-
duced that represents the depth of discharge (DoD). This factor effectively
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scales up the actual battery design (since xes is divided by ψ) to account
for the desired operating capacity. For example, the battery is considered to
operate between 10%-90% of its total capacity, and therefore the DoD is set
to ψ = 0.8. Within this window, the open circuit potential of the battery and
the round-trip efficiency are relatively constant [37]. Thus a constant η value
in the model is accurate and the resistive heating element is always expected
to satisfy the required temperature condition (Assumption 5) without con-
version losses (Assumption 1). The units of the outputs of these equations
are US$.

2.4. Optimal Design and Technoeconomic Assessment

The technical and economic models developed in this work are formulated
as functions of the design variables x specifically to enable the use of formal
mathematical optimization in the design of hybridization strategies. This
ensures that only guaranteed optimal designs are evaluated for economic
feasibility.

The objective function for the optimal design problem is formulated as
the lifecycle cost savings (LCS):

fk
LCS(x) =

tlife∑
i=1

SF (x)Cp,i − Ck
cap,i(x)− Com,i(x)

(1 + r)i
, (20)

where tlife is the project lifetime (in years), r is the capital discount rate, Cp,i is
the cost of natural gas at year i, Ck

cap,i is the annualized cost of capital (includ-
ing debt service) in year i for technology k, and Ck

om,i is the annual operating
and maintenance cost of technology k ∈ {PTC, PV 0T, PV 0E,PV 1T, PV 1E}
at year i. The expression SF was originally defined in (14) and is expressed
here as a function of the relevant design variables x as

SF (x) =

∑
i h(q̇

i
s(x)− q̇ilh(x)− q̇ilb(x))∑

i hq̇
i
p

= 1−
∑

i hq̇
i
ng(x)∑

i hq̇
i
p

,

with q̇ilb = 0, for all i, for thermal storage systems. Note that in this for-
mulation, the relationships (9) and (13) are embedded in the definition of
SF (· ). Furthermore, the smooth approximation of the mid(· , · , · ) operator
formulated in [17] is used for (9) and (13) to ensure differentiability of the
model.
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In some applications, it may be useful to specify a minimum solar fraction
ξ ≥ 0. Therefore, the following inequality constraint is formulated for the
optimization problem:

g(x, ξ) = ξ − SF (x) ≤ 0, (21)

with ξ ∈ [0, 1], and ξ = 0 represents the unconstrained case since SF (· ) ≥ 0
by definition. The optimal design problem is then formulated as:

f ∗
LCS =max

x∈X
fk
LCS(x)

s.t. g(x, ϵ) ≤ 0 (22)

X = {x ∈ R2
+ : xL ≤ x ≤ xU}.

This optimization formulation will be used in the next section to study the
technoeconomic feasibility of solar IPH hybridization strategies.

3. Numerical Experiments and Results

The models developed in this paper allow for the determination of eco-
nomically optimal solar system sizes for industrial heating processes hy-
bridized with natural gas. In this section, we will analyze the following
case studies: unconstrained systems designs §3.1, constrained systems de-
signs §3.2, a survey of process demand scales §3.3, higher natural gas prices
§3.4, and the future trends of the electrified technologies §3.5. The cost pa-
rameters for these technologies can be found in Appendix E, and the capital
cost models can be found in (15)-(19).

All models presented here were implemented in the Julia programming
language [43] v1.7.0. The hourly solar radiation data were taken from the
TMY data obtained from NREL’s NSRDB [33]. Operating and maintenance
costs were omitted from each study to better compare the capital costs of
solar to natural gas costs. Each optimization problem is solved to guaranteed
global optimality using the EAGO.jl solver [31] v0.6.1 with the appropriate
convex envelopes developed by Stuber [17, Thm. 3]. IPOPT [20] was used
to solve the local and convex optimization subproblems via Ipopt.jl v0.6.5.
JuMP [44] v0.21.5 was used to model the optimization problems. For each
problem solved, the solver outputs the optimal solar system size x∗, the cor-
responding optimal solution value f ∗

LCS, and the optimal solar fraction value
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SF ∗. For each case, a constant DoD of ψ = 0.8 is used, as is a constant
and conservative round-trip efficiency η = 0.85, based on the validated work
of Schimpe et al. [37]. All technologies in this study are subject to a con-
stant demand profile over a 30-year lifecycle of the system. Figure 4 and
Figure 5 are presented to illustrate the objective function and solar fraction
surfaces over the design/decision space for each technology consideration for
a base-case scenario. Deterministic global optimization identifies a design
that results in the highest LCS (as analyzed in the subsequent case studies).
A solar fraction constraint, as formulated in (22), restricts the feasible set to
the corresponding ξ-superlevel set, which is explored in §3.2.

3.1. Unconstrained Case Study

This case study examines the feasibility of unconstrained (ξ = 0) solar
systems located in three locations across the continental US: Firebaugh, CA;
Aurora, CO; and Weston, MA; with a process demand of 10 MW and using
a national average price of commercial natural gas of US$9.52 per MMBTU
as of July 2021, listed in Appendix E.

Regarding economic feasibility, PTCs outperform PVs, and TES outper-
form EES. In the left columns of Figure 4 and Figure 5, the aperture area and
storage size are plotted against the LCS value fk

LCS for each technology in
Firebaugh, CA. Although they are more expensive per unit area, PTCs have
a higher LCS because they have a significantly higher conversion efficiency
of incident light compared to PVs. On average, PTCs convert 63.9% of inci-
dent light into energy, while PVs only convert 17.1%. TES outperforms EES
because the capital cost is significantly lower. In Figure 5, the EES plots
illustrate greater sensitivities to storage size than aperture area due to the
high EES capital cost prefactor (listed in Appendix E). Furthermore, TES
can use all its storage capacity, while EES can only be charged between 10%
and 90% due to the DoD. To compare their ability to meet process demands,
the solar fractions of each technology are compared.

PTCs with TES have higher SF values as compared to their PV and
EES counterparts. The SF value represents the fraction of the total process
demand that is supplied by solar technologies via solar modules and energy
storage. As seen in the right columns of Figure 4 and Figure 5, PTC systems
have greater sensitivities with respect to aperture area as compared to PVs.
This means that a PTC system can reach the demands of the process with
much lower aperture areas compared to a PV system. This is explained by
the higher conversion of incident light to usable energy by PTCs compared
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Table 1: The optimal solar system sizes, corresponding lifecycle cost savings f∗
LCS , and

solar fractions are tabulated for the case study of §3.1. These results were obtained for an
unconstrained 10MW process with natural gas priced at $9.52 per MMBTU. PTC-TES
systems have the highest f∗

LCS , at least four times higher than the best PV system (PV1-
TES) in all locations.

x∗a x∗ts/x
∗
es f ∗

LCS SF ∗

Location System (104 m2) (h) (106 US$) (%)
Firebaugh, CA PTC-TES 4.94 13.0 12.4 73.6

PV1-TES 12.3 10.6 3.17 64.3
PV0-TES 18.6 13.6 1.45 78.2
PV1-EES 6.07 0 1.99 31.7
PV0-EES 5.84 0 0.671 24.6

Aurora, CO PTC-TES 6.10 16.0 11.9 78.7
PV1-TES 13.0 10.9 1.90 62.6
PV0-TES 18.2 13.7 1.05 75.6
PV1-EES 6.01 0 1.34 29.2
PV0-EES 5.68 0 0.546 23.5

Weston, MA PTC-TES 6.50 17.9 7.24 65.3
PV1-TES 0 0 0 0
PV0-TES 0 0 0 0
PV1-EES 0 0 0 0
PV0-EES 0 0 0 0

to PVs. PV1-TES reaches a higher maximum SF value than PV1-EES due
to EES accounting for the DoD and the discharge losses, which enforces the
availability of only a fraction of the designed battery capacity, while TES has
no such limitations on the availability of its design capacity.

The location of the system significantly impacts the feasibility of solar
hybridization. As seen in Table 1, every optimal system in Firebaugh, CA
and Aurora, CO has a nonzero aperture area. However, in Weston, MA, all
PV technologies considered are economically infeasible due to the lower solar
resource and higher average incident angle. The higher collection efficiency
of PTCs allows PTC-TES hybridization to be economically feasible, even in
Weston, MA.

3.2. Constrained Case Study

In addition to a pure technoeconomic analysis for optimal solar system
design, environmental considerations may also be taken into account. This
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Figure 4: The lifecycle cost savings (LCS) and solar fraction (SF) are plotted for systems
using PTC, PV1 and PV0 for energy collection and thermal energy storage (TES). These
results were obtained for a 10MW process in Firebaugh CA with natural gas priced at
$9.52 per MMBTU. The LCS graphs illustrate the nonconvexity of the objective functions
and highlight the need for rigorous global optimization.
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Figure 5: The lifecycle cost savings (LCS) and solar fractions (SF) are plotted for systems
using PV1 and PV0 for energy collection and electrical energy storage (EES). These results
were obtained for the base-case study of a 10MW process in Firebaugh, CA with natural
gas priced at $9.52 per MMBTU. EES systems have a very different shape and lower
optimal LCS value than the TES systems found in Figure 4 due to their higher cost.
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may be achieved by adding the solar fraction constraint (21) and introducing
the parameter ξ that represents the lower bound on the solar fraction for an
optimal design. This ensures that a greater share of renewable energy is used
and, in turn, reduces natural gas combustion. However, this also results in
an economic performance that cannot be better than the unconstrained case
of §3.1. This can be seen in Figure 4 and Figure 5 where greater SF values
(right columns) correspond with lower fk

LCS values (left columns). Aside from
the introduction of the SF constraint, all other conditions are the same as in
§3.1.

The results of the constrained optimal design problems are presented in
Table 2. As expected, SF-constrained systems have lower f ∗

LCS values com-
pared to unconstrained systems. The design trends also differ from Table 1.
In Firebaugh and Aurora, The f ∗

LCS of the PV0-TES case is positive, while
the f ∗

LCS of the PV1-TES case is very negative. This difference between
the constrained and unconstrained cases is attributed to the topology of the
fk
LCS functions shown in Figure 4. The surfaces of both fPV 0T

LCS and fPV 1T
LCS

are similar in shape; however, fPV 0T
LCS is flatter in the vicinity of the optimal

solution, allowing for reduced LCS losses when deviating from the maximum.
This flatter shape is due to the lower capital cost of PV0-TES compared to
PV1-TES. In the LCS graph of PV1-EES, any system storage size greater
than zero results in negative savings, which implies that more money is saved
by losing excess energy than buying lithium-ion batteries to store it for later.

Since the optimal SF values of §3.1 are all below 85%, setting ξ = 0.85
in this case study forces the optimal designs to have larger apertures x∗a
and greater storage capacities x∗ts/x

∗
es. When comparing the optimal designs

of the constrained case with the unconstrained case of §3.1, the optimal
designs are indeed much larger in both apertures and storage capacities.
In all TES cases, storage capacities increase disproportionately to aperture
areas, which means that for high SF values, it is more economical to reduce
solar losses q̇lh as additional TES becomes cheaper than additional aperture
area. However, for PV-EES cases in each location, larger solar apertures are
favored compared to PV-TES as a result of EES being significantly more
expensive than TES. For example, for Weston, PV1-EES has 44.8% more
solar aperture area than PV1-TES (41.7×104 m2 versus 28.8×104 m2) but
54% less storage capacity (15 h versus 32.6 h). Similar trends are apparent for
Firebaugh and Aurora. This is consistent with the economic trends discussed
above that it is economically advantageous to lose excess energy (as q̇lh) than
to invest in EES at its current price.
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Table 2: The optimal solar system sizes, corresponding lifecycle cost savings f∗
LCS , and

solar fractions are tabulated for the case study of §3.2. Constraining the solar fraction
to be at least 85% forces the solar system designs to become large, and sometimes even
negative investments. These results were obtained for a 10MW process with natural gas
priced at $9.52 per MMBTU.

x∗a x∗ts/x
∗
es f ∗

LCS SF ∗

Location System (104 m2) (h) (106 US$) (%)
Firebaugh, CA PTC-TES 7.45 21.7 11.3 85.0

PV1-TES 21.5 22.8 -2.25 85.0
PV0-TES 21.3 20.5 0.087 85.0
PV1-EES 28.5 13.3 -53.9 85.0
PV0-EES 26.7 14.9 -55.0 85.0

Aurora, CO PTC-TES 7.31 21.1 11.5 85.0
PV1-TES 21.4 22.9 -2.11 85.0
PV0-TES 21.0 18.5 0.45 85.0
PV1-EES 28.0 13.6 -54.1 85.0
PV0-EES 27.0 14.6 -54.5 85.0

Weston, MA PTC-TES 10.6 38.0 5.37 85.0
PV1-TES 28.8 32.6 -11.2 85.0
PV0-TES 26.6 31.6 -6.65 85.0
PV1-EES 41.7 15.0 -73.2 85.0
PV0-EES 41.2 15.7 -72.0 85.0

3.3. Process Demand Dependence

In this section, the effects of the process demand are examined for IPH
demands of 0.1 MW, 1 MW, and 10 MW under the same unconstrained
conditions as §3.1. The normalized optimal design results are presented in
Figure 6 and the economics are tabulated in Table 3 (see Table A.1 for the
complete solution results).

Regardless of the process demand, PTCs outperform PVs and TES out-
perform EES. This analysis is influenced by two parts: the economies of scale
for these technologies and their effectiveness/efficiency in utilizing solar en-
ergy. Only examining the economies of scale would lead to the prediction
that the difference between PV and PTC arrays would be comparatively
smaller for small systems and comparatively larger for large systems. This is
because the capital cost models for PV system configurations introduced in
§2.3 have greater exponent values on xa and xts/xes than the PTC models.
However, the analysis of technologies is more complicated. While the smaller
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Figure 6: The results of the case study in §3.3 are plotted. For natural gas priced at
$9.52/MMBTU, radar plots illustrate the normalized optimal lifecycle cost savings (f∗

LCS),
aperture area (x∗

a), solar fraction (SF ), and thermal energy storage (x∗
ts) or electrical

energy storage (x∗
es) for PTC-TES, PV1-TES, PV0-TES, PV1-EES, PV0-EES systems in

three locations and across three process demands. The values were normalized for each
process demand using the highest optimal value (rounded up to two significant figures)
for each variable. Tabulated results can be found in Table A.1.
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size would favor the cost of PVs over PTCs, there are several other factors
that impact the f ∗

LCS value that also vary with size. Such factors include
their degree of hybridization with natural gas, and the ability to charge the
energy storage device even with small aperture areas. Thus, rigorous opti-
mization, as conducted herein, is necessary for a complete technoeconomic
assessment.

The numerical results of the model predict that the difference between
PVs and PTCs is actually comparatively larger in the small demand systems.
PTC systems have optimal LCS values 15 times higher than the best PV
system at 0.1 MW and have LCS values only 4 times higher than the best
PV system at 10 MW. In the case of energy storage, the capital cost of
EES is too high compared to that of TES, and thus it is not favorable for
IPH applications, regardless of the process demand. The vast differences in
optimal LCS across different process demands can be elucidated by exploring
their corresponding optimal system sizes.

The process demands and locations dramatically affect the optimal sys-
tem sizes, as seen in Figure 6. For the 10 MW systems, the optimal PTC
system in Weston has a larger TES capacity than the optimal PTC system
in Firebaugh or Aurora. This is because Weston has lower irradiance and
needs more storage capacity to reduce natural gas consumption and maxi-
mize the LCS. In some cases, the optimal PV system has no storage with
a nonzero aperture area. This is because the aperture area is too small or
the irradiance is too little to generate a sufficient energy surplus that can be
stored. Figure 6 also highlights how small the optimal system sizes become
for PV systems paired with 0.1 MW and 1 MW IPH systems compared to
PTC systems, especially in locations with reduced insolation. As expected,
examining the optimal designs shows that the higher costs of PVs results in
less hybridization and, in turn, greater natural gas consumption and lower
f ∗
LCS values compared to PTC designs. To explore this further, we consider
a scenario with higher gas prices in the next section.
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Table 3: The optimal lifecycle cost savings f∗
LCS are tabulated for the considered technolo-

gies at three process demand sizes for the case study in §3.3. These results were obtained
for natural gas priced at $9.52 per MMBTU. PTC systems perform significantly better
compared to PV systems, especially for smaller IPH demand.

Location System 0.1 MW 1 MW 10 MW
Firebaugh, CA PTC-TES 84,800 1,060,000 12,400,000

PV1-TES 5,680 145,000 3,170,000
PV0-TES 0 14,100 1,450,000
PV1-EES 4,880 126,000 1,990,000
PV0-EES 0 7,710 671,000

Aurora, CO PTC-TES 72,400 969,000 11,900,000
PV1-TES 0 69,000 1,900,000
PV0-TES 0 3,490 1,050,000
PV1-EES 0 62,600 1,340,000
PV0-EES 0 0 546,000

Weston, MA PTC-TES 27,700 504,000 7,240,000
PV1-TES 0 0 0
PV0-TES 0 0 0
PV1-EES 0 0 0
PV0-EES 0 0 0

3.4. High Natural Gas Prices

In this case study, the same process scales as the previous section are
considered; however, the natural gas price is doubled to a value of US$19.04
per MMBTU. This could represent cases of carbon emissions penalties and/or
reductions in gas production/availability.

The normalized optimal design results of this study are presented in Fig-
ure 7 with the economics tabulated in Table 4 (see Table B.1 for the complete
solution results). Not only are the optimal solar system sizes larger than those
corresponding to the lower natural gas price, but the gap between PTCs and
PVs has been greatly reduced. Additionally, the optimal system sizes do not
significantly change across location or process size as seen in Figure 7. PTCs
still outperform PVs economically in all locations and IPH demand scales,
but the gap is reduced for higher natural gas prices versus the lower natural
gas prices. Figure 7 shows that PV-TES systems are competitive with PTC
systems even for small process demands and locations with reduced sunlight.

At normal gas prices, PTCs have an f ∗
LCS value that is larger than the

best PV option (PV1-TES) by a factor of 15 and a factor of 4 for the 0.1
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Table 4: The optimal lifecycle cost savings f∗
LCS are tabulated for the considered technolo-

gies at three process demand sizes for the case study in §3.4. These results were obtained
for natural gas priced at $19.04 per MMBTU. PTCs are favored economically over PV at
all scales.

Location System 0.1 MW 1 MW 10 MW
Firebaugh, CA PTC-TES 302,000 3,330,000 36,200,000

PV1-TES 192,000 2,150,000 23,700,000
PV0-TES 200,000 2,260,000 25,000,000
PV1-EES 102,000 1,110,000 12,000,000
PV0-EES 70,300 785,000 8,620,000

Aurora, CO PTC-TES 303,000 3,370,000 37,000,000
PV1-TES 181,000 2,080,000 23,300,000
PV0-TES 198,000 2,270,000 25,400,000
PV1-EES 89,100 992,000 10,900,000
PV0-EES 66,400 746,000 8,250,000

Weston, MA PTC-TES 221,000 2,630,000 30,200,000
PV1-TES 110,000 1,380 000 16,600,000
PV0-TES 122,000 1,530,000 18,400,000
PV1-EES 57,000 672,000 7,690,000
PV0-EES 42,300 507,000 5,860,000

MW and 10 MW IPH scales, respectively. With doubled natural gas prices,
PTCs have an f ∗

LCS value that is larger than the best PV option (PV0-TES)
by a factor of only 1.51 and 1.45 on the 0.1 MW and 10 MW IPH scales,
respectively. At all process demands for this case study, PV0-TES and PTC-
TES have similar solar fractions (within 5%), meaning that they have similar
optimal system designs. Even in this comparison, the f ∗

LCS value for PTCs
is significantly higher than that of PVs. Therefore, the models predict that
PTC systems are a better investment than PV systems even with an increase
in natural gas costs.

By doubling the natural gas price, the f ∗
LCS values for PV0-TES are

greater than PV1-TES in all scenarios. This result was unexpected because
PV1-TES always outperformed PV0-TES with the standard natural gas price
in the unconstrained case. However, with higher natural gas prices, optimal
solar system designs have much larger aperture areas because it is econom-
ically advantageous to reduce natural gas consumption. These larger arrays
are capable of meeting the full IPH demand during sunny days (daily inso-
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Figure 7: For natural gas priced at $19.04 per MMBTU, radar plots illustrate the nor-
malized optimal lifecycle cost savings (f∗

LCS), aperture area (x∗
a), solar fraction (SF ), and

thermal energy storage (x∗
ts) or electrical energy storage (x∗

es) for PTC-TES, PV1-TES,
PV0-TES, PV1-EES, PV0-EES systems in three locations and across three process de-
mands. The values were normalized for each process demand using the highest optimal
value for each variable. Tabulated results can be found in Table B.1.
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lation ≥6 kWh/m2), which, for example, account for more than two-thirds
of the Firebaugh TMY data. Under these conditions, energy storage is at
capacity, and any excess generation is simply unutilized and lost, regardless
of technology. Since PV0-TES and PV1-TES are effectively equal from a
pure performance perspective (i.e., both are capable of meeting the process
demand), the lower cost of PV0-TES is advantageous, resulting in higher
f ∗
LCS values.
The benefit of PV0 over PV1 only exists when using TES and not EES. In

their respective optimal designs, systems with EES have much lower storage
capacities and therefore lower SF values than those with TES. On lower
solar resource days, EES systems cannot meet the full IPH demand like TES
systems, placing a greater importance on the collector’s ability to directly
meet IPH demands to maximize LCS. Therefore, with EES, PV1 is more
favorable than PV0.

An interesting observation regarding all PTC-TES results and the 10 MW
PV0-TES results is that the system in Aurora outperforms the equivalent
system in Firebaugh. At first glance, this may not seem intuitive consid-
ering that Firebaugh has a higher average irradiance throughout the year.
However, Aurora’s annual irradiance profile complicates the comparison of
optimal results. The day-to-day variation in Aurora is broader than in Fire-
baugh (i.e., there are more cloudy days and more extremely sunny days than
in Firebaugh), which means that the system in Aurora must be sized to com-
pensate for the cloudy days. In turn, this also allows for more solar power to
be utilized during the sunny days. The higher variation in Aurora also leads
to more extremely sunny days. These extremely sunny days generate large
surpluses of energy that can be stored and used throughout the night and
the following day.

Comparing thermal and electrical storage, thermal storage prevails eco-
nomically. The optimal LCS values of TES systems are significantly higher
than those of EES. The capital cost of EES is so high that other parameters,
such as the size of the solar array and the price of natural gas, cannot offset
the investment required to implement EES. Overall, increasing the price of
natural gas slightly bridges the gap between PTCs and PVs, but the optimal
LCS of PTCs is over one million dollars more than that of the PV solutions.

3.5. Future of Photovoltaics

In each of the case studies presented above, PTCs outperform PV options
and TES outperforms EES. Despite these findings, the developed models and
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optimization-based approach can be used to determine which improvements
might be necessary for PVs and EES to match the economic performance of
PTCs and TES. This section explores these ideas.

The price of PVs has decreased significantly over the last decade. While
PTC technologies have remained stagnant, PVs have had remarkable im-
provements driven by research and development. According to NREL data
[38], PV costs have precipitously decreased: PV0 has fallen by 80% and
PV1 has fallen by 82% for large arrays over the last decade. However, the
most significant price drops occurred between 2010 and 2018 with a gradual
stagnation in later years, as seen in Figure 8.

The developed models allow for the identification of the necessary costs
for PVs (PV0 and PV1) to reach economic parity with PTCs for IPH ap-
plications. The analysis in this section assumes that the economies of scale
remain constant (values of the exponents on xa and xts/xes), and only the
pre-exponential factor would change in Appendix E. Additionally, this anal-
ysis will only consider the most favorable PV technology for each scenario,
so as to compare the most applicable PV technology to PTCs. According
to the models, for a 10 MW system located in Firebaugh, CA, PVs would
require over a 54.0% decrease in cost to be at parity with the f ∗

LCS value of
PTCs (using the natural gas rate of $9.57/MMBTU). Increasing the price
of natural gas increases the economic feasibility of PVs. However, a natu-
ral gas price of $19.04/MMBTU still requires PVs to have a 48% decrease
in cost. Therefore, PVs require considerable improvements before they can
outperform PTCs in hybridizing IPH systems. Even if the solar industry
can meet the price reduction goals set by SETO for 2025 (module cost of
$0.20 per kWh), PV0 and PV1 would only see cost reductions of 22% and
13.7%, respectively [11], falling short of that required for economic parity
with PTCs.

Instead of relying on reduced costs, increased efficiency provides an alter-
native to increasing the economic viability of PVs for IPH applications. If
costs remain constant, PVs would require a 125% increase from their current
efficiencies to reach parity with PTCs. These increases would require a power
conversion efficiency (PCE) of at least 38.4%. With an increased natural gas
price of $19.04/MMBTU, PVs still require a 98% increase in their current
efficiency to reach parity with PTCs. This corresponds to a PCE of at least
33.8%. Although efficiencies have been increasing, the most efficient silicon
solar cell is significantly below 30%, even under ideal laboratory conditions,
as seen in Figure 8. For PVs to be competitive with PTCs, both significant
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Figure 8: The decreasing costs and increasing efficiency of silicon photovoltaics (PVs) over
time. Prices rapidly decreased at the beginning of the decade but have begun to plateau
as production is being further optimized. Single crystal (non-concentrating) are the most
commonly used PVs for commercial and industrial use but their efficiency has stagnated
over the last 20 years, with only a 2% increase in power conversion efficiency.

cost reductions and efficiency increases must be achieved.
Other avenues that enable renewable energy penetration in IPH appli-

cations are economic and technological improvements in EES. Lithium-ion
batteries are an attractive option because of their currently decreasing costs
and increasing performance (e.g. lower material cost and increased charge
density) over time [45]. The feasibility of batteries is volatile and changes
with technological breakthroughs, but some initial statements can be made
using the model developed herein. Similar to the analysis of PV technologies
above, if it is assumed that the economies of scale remain constant, then we
can assess the conditions for EES to reach economic parity with TES. For
this parametric analysis, the capital cost prefactor and physical parameters
(e.g., the DoD and round-trip efficiency) of the model were modified.

The findings of this analysis indicate that both cost and physical improve-
ments must be made in tandem to achieve comparable economic feasibility to
TES. From a strictly technical performance perspective, increasing the DoD
ψ and efficiency η to their highest possible values of 1 is still not enough to
become economically competitive with the TES alternative. The optimal re-
sults have nearly zero battery storage capacity with only an increase of 0.05%
and 0.08% in optimal LCS for PV0-EES and PV1-EES, respectively. This
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indicates that the model is not sensitive to technical performance changes
alone due to their inability to offset the high capital cost prefactor of EES.
On the other hand, from a strictly economic sense, with a Ccap,0 value of
10 $/kWh0.94 (i.e., a 98% decrease in the EES value of 736.38), PV1-EES
achieves parity with PV1-TES within 1.3% and uses a 12-hour Li-ion stor-
age capacity. However, the optimal 0-axis tracking (PV0-EES) configuration
results in only 2 hours of battery storage and an LCS value of only 63%
of the LCS of the optimal PV0-TES configuration. Although multifaceted
improvements in lithium-ion batteries are being made under evolving market
conditions, the current technoeconomic analysis indicates that major im-
provements are necessary before they become a viable option for large scales
and applications such as IPH systems.

4. Conclusions

In this article, dynamical models were developed to directly compare the
technoeconomic feasibility of different solar technologies for IPH applications.
These models apply deterministic global optimization to establish optimal
system sizing (array aperture area and energy storage capacity) for each tech-
nology. The models account for technology economics, efficiencies, IPH de-
mand/scale, minimum solar fraction, real-world solar performance, variable
or constant demand profiles, and natural gas prices to account for a broad
scope of hybridization conditions and strategies. While these models were
used to provide valid conclusions based on individual case studies, they can
also serve as a basis for further customization (i.e., their inputs/parameters
adjusted, relaxing assumptions by accounting for additional phenomena) to
site-specific information that can help engineering design professionals deter-
mine the technoeconomic feasibility of their proposed system.

For hybridized IPH systems, PTCs currently outperform all PV-based
technologies regardless of location or process demand. The gap between the
technologies shrinks in locations with more sunlight and for larger systems.
However, even in the most competitive situation, PTCs are over four times
more economically favorable than PVs while providing similar solar fractions.
This study identifies that the most competitive PV tracking system depends
on the degree of natural gas hybridization. Single-axis tracking (PV1) is more
favorable for applications with lower solar fractions, whereas fixed systems
(PV0) are more favorable for applications that have higher solar fractions.
A parametric study was conducted to identify what necessary improvements
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to PVs must be made to reach price parity with PTCs. To reach parity with
PTCs, PVs must either have current prices decrease by over 50% at current
efficiencies, have their current efficiencies double at current costs, or some
combination thereof. Furthermore, PVs using EES are not economically
advantageous due to the physical limitations of their efficiency and DoD, as
well as impractically high capital costs. The optimization models developed
herein were solved to guaranteed global optimality and can also be readily
adapted to the changing economic and technological parameters. Therefore,
they represent rigorous and flexible models for optimal solar hybridization of
IPH systems.

Lastly, the models developed and the rigorous optimization-based ap-
proach can help policy makers determine how to allocate subsidies to help
achieve Sustainable Development Goal 7, ensuring the availability of sus-
tainable energy. While PV technologies are being thoroughly researched and
implemented, PTC technologies are an equally sustainable alternative and
can provide thermal energy at a significantly cheaper cost under current eco-
nomic conditions. As such, decarbonization goals may be achievable for IPH
applications without electrification.

Appendix A. Results for Natural Gas Unit Cost of $9.52/MMBTU

Table A.1: The optimal solutions are tabulated for the considered technologies at three
process demand sizes. These results were obtained for systems using the US national natu-
ral gas average of $9.52 per MMBTU. PTC systems perform significantly better compared
to PV systems at lower process demand.

f∗
LCS x∗

a x∗
ts/x

∗
es SF∗ f∗

LCS x∗
a x∗

ts/x
∗
es SF∗ f∗

LCS x∗
a x∗

ts/x
∗
es SF∗

106 $ m2 h - 106 $ m2 h - 106 $ m2 h -
Firebaugh, CA 0.1 MW 1 MW 10 MW

PTC-TES 0.0848 419 11.6 0.686 1.06 4,540 12.0 0.711 12.4 49,400 13.0 0.736
PV1-TES 0.00568 577 0.00 0.304 0.145 12,000 10.3 0.628 3.17 123,000 10.6 0.643
PV0-TES 0.00 0.00 0.00 0.00 0.0141 5,650 0.00 0.238 1.45 186,000 13.6 0.782
PV1-EES 0.00488 577 0.00 0.304 0.126 6,060 0.00 0.316 1.99 60,700 0.00 0.317
PV0-EES 0.00 0.00 0.00 0.00 0.00771 5,640 0.00 0.238 0.671 58,600 0.00 0.246

Aurora, CO 0.1 MW 1 MW 10 MW
PTC-TES 0.0724 509 13.1 0.714 0.969 5,710 14.3 0.759 11.9 61,000 16.0 0.787
PV1-TES 0.00 0.00 0.00 0.00 0.0690 2,790 0.00 0.283 1.90 130,000 10.9 0.626
PV0-TES 0.00 0.00 0.00 0.00 0.00349 5,410 0.00 0.225 1.05 182,000 13.7 0.756
PV1-EES 0.00 0.00 0.00 0.00 0.0626 5,790 0.00 0.283 1.34 60,100 0.0 0.292
PV0-EES 0.00 0.00 0.00 0.00 0.00348 5,360 0.00 0.223 0.546 56,800 0.00 0.235

Weston, MA 0.1 MW 1 MW 10 MW
PTC-TES 0.0277 467 11.3 0.521 0.504 5,440 13.2 0.579 7.24 65,000 17.9 0.653
PV1-TES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PV0-TES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PV1-EES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PV0-EES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Appendix B. Results for Natural Gas Unit Cost of $19.04/MMBTU

Table B.1: The optimal solutions are tabulated for the considered technologies at three
process demans sizes. These results were obtained for systems using a natural gas price
of $19.04 per MMBTU. PTCs outperform PVs regardless of process scale. Furthermore,
PTCs did not significantly outperform PV technologies at the 0.1 MW process scale.

f∗
LCS x∗

a x∗
ts/x

∗
es SF∗ f∗

LCS x∗
a x∗

ts/x
∗
es SF∗ f∗

LCS x∗
a x∗

ts/x
∗
es SF∗

106 $ m2 h - 106 $ m2 h - 106 $ m2 h -
Firebaugh, CA 0.1 MW 1 MW 10 MW

PTC-TES 0.302 620 15.6 0.796 3.33 7,230 20.4 0.841 36.2 82,400 26.52 0.880
PV1-TES 0.192 1,490 12.0 0.732 2.15 15,400 12.5 0.735 23.7 167,000 15.7 0.767
PV0-TES 0.200 1,960 14.3 0.812 2.26 19,700 15.0 0.815 25.0 198,000 16.2 0.820
PV1-EES 0.102 727 0.00 0.353 1.11 7,540 0.00 0.359 12.0 78,300 0.00 0.365
PV0-EES 0.0703 709 0.00 0.280 0.785 7,400 0.00 0.287 8.62 78,800 0.00 0.296

Aurora, CO 0.1 MW 1 MW 10 MW
PTC-TES 0.303 713 19.8 0.841 3.37 7,920 28.0 0.885 37.0 90,300 35.4 0.929
PV1-TES 0.181 1,650 14.9 0.750 2.08 17,500 15.1 0.772 23.3 183,000 16.8 0.792
PV0-TES 0.198 2,120 17.0 0.851 2.27 21,600 19.7 0.865 25.4 220,000 21.6 0.877
PV1-EES 0.0891 754 0.00 0.338 0.992 7,880 0.00 0.346 10.9 81,600 0.00 0.351
PV0-EES 0.0664 706 0.00 0.273 0.746 7,450 0.00 0.281 8.25 79,800 0.00 0.291

Weston, MA 0.1 MW 1 MW 10 MW
PTC-TES 0.221 861 28.1 0.774 2.63 9,660 33.8 0.820 30.2 105,000 37.6 0.849
PV1-TES 0.110 1,750 16.3 0.653 1.38 18,800 19.4 0.691 16.6 202,000 23.5 0.726
PV0-TES 0.122 2,260 18.94 0.754 1.53 23,700 23.1 0.787 18.4 248,000 25.9 0.812
PV1-EES 0.0570 756 0.00 0.283 0.672 7,970 0.00 0.293 7.69 83,700 0.00 0.301
PV0-EES 0.0423 722 0.00 0.235 0.507 7,600 0.00 0.243 5.86 80,100 0.00 0.251

Appendix C. Modeling Parameters

Name Value Units Description
Isc 6.23 A Short circuit current
αT 0.035 - Temperature coefficient for current
q 1.602× 10−19 C Electric charge
Voc 64.8 V Open circuit voltage
kB 1.38× 10−23 J/K Boltzmann constant
N 96 Cells Number of cells in series
Eg0 1.17 eV Band gap energy at 0K
α 4.73× 10−4 eV/K2 Electron–phonon pair constant
β 636 K Parameter related to Debye Temperature
Vmp 54.8 V Maximum power voltage
Imp 5.86 A Maximum power current
ϵr 0.985 - Reflection efficiency
ϵs 0.95 - Soiling efficiency
ϵi 0.97 - Inverter efficiency
ϵw 0.99 - Wiring efficiency
η 0.85 - Li-ion battery round-trip efficiency
ψ 0.8 - Li-ion battery depth of discharge
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Appendix D. Photovoltaic Modeling

Appendix D.1. Photovoltaic Equations

Iph = [Isc + αT (Tc − Tr)]
G

Gr

(D.1)

I0 =
Isc

exp
(

qVoc

nkBNTc

)
− 1

(
Tc
Tr

)3

exp

(
qEg(

1
Tr

− 1
Tc
)

nkB

)
(D.2)

Eg = Eg0 −
αT 2

T + β
(D.3)

Rs =

NsnkBTc

q
log(1− Imp

Isc
) + Voc − Vmp

Imp

(D.4)

n =
q(2Vmp − Voc)

NkBTr(
Imp

Isc−Imp
+ log( Isc−Imp

Isc
))

(D.5)

Appendix D.2. Solar Time Factors and Angles

Earth’s orbital velocity is not constant throughout the year and so we
must account for the variations between the apparent solar time AST and
the local clock time with the function ET , which is a function of the day of
the year N :

B = (N − 81)
360

365
, (D.6)

ET = 9.87 sin 2B − 7.53 cosB − 1.5 sinB. (D.7)

With this correction, the apparent solar time AST is calculated as

AST = ET ± 4(15[Time Zone (h)]− [Longitude◦]), (D.8)

where the (+) is chosen if the location is east of the prime meridian and (−)
if it is to the west. In addition to these solar time factors, solar angles must
be calculated to model the performance of the solar technologies.

The declination angle δ, hour angle γ, zenith angle ϕ, and solar elevation
angle α, are calculated by:
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δ = 23.45◦ sinB, (D.9)

γ = 15

(
h +

AST

60
− 12

)
, (D.10)

cosϕ = sin [Latitude◦] sin δ + cos [Latitude◦] cos δ cos γ, (D.11)

sinα = cosϕ. (D.12)

Finally, the azimuth ζ is calculated by:

ζ =


arcsin

(
cos δ sin γ

cosα

)
, if cos γ > tan δ

tan [Latitude◦]
,∣∣ arcsin ( cos δ sin γ

cosα

) ∣∣− π, elseif cos γ ≤ tan δ
tan [Latitude◦]

∧ γ ≤ 0,

π − arcsin
(
cos δ sin γ

cosα

)
, else,

(D.13)

where the first case holds if the sun rises/sets south of the E-W line, and the
other two cases are when the sun rises/sets north of the E-W line.

Appendix D.3. Zero-Axis Tracking

For the zero-axis tracking model, the surface tilt angle is set equal to the
latitude. Under this condition, the incident angle θ is calculated by:

cos θ = cos δ cos γ. (D.14)

Appendix D.4. One-Axis Tracking

For the one-axis tracking model, systems are fixed in the N-S orientation
and track the sun east to west with no tilt from the horizontal plane in the
N-S direction. The surface incident angle θ for the one-axis tracking system
is calculated by

cos θ =

√
cos2 ϕ+ cos2 δ sin2 γ. (D.15)

Appendix E. Cost Parameters

CPV 0,0, specific installed cost of PV0 ($/m1.92) 200.18
CPV 1,0, specific installed cost of PV1 ($/m1.92) 223.49
CPTC,0, specific installed cost of PTC ($/m1.84) 425
CEES,0, capital cost of Lithium-ion battery ($/kWh0.94

e ) 736
CTES,0, capital cost of thermal energy storage ($/kWh0.91

th ) 45.14
natural gas cost ($/MMBTU) 9.52
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Data Availability

Data and source code used in this study are available on the GitHub
repository: https://github.com/PSORLab/SolarIPH.
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