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Global Optimization

« Complex problems arise in many
applications R —)

— Advanced control systems —
— Thermodynamic stability

— Kinetic parameter estimation D _
. S %;z% D (&% % /) Metastable Point
— Design under uncertainty B s Equilirium

— Etc.

[1] Wang, C., Wilhelm, M.E., and Stuber, M.D. Semi-Infinite Optimization with Hybrid Models. Industrial & Engineering Chemistry Research. 61, 5239-5254 (2022).
[2] Grajcarova, L. Simulations of structural phase transitions in crystals using ab initio metadynamics. INIS-IAEA. (2013).
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Easy Advanced Global Optimization

* Open-source deterministic global

solver for nonconvex MINLPs
— Semi-infinite programs (SIPs)
— Dynamic optimization

— User-defined functions

* Applies McCormick-based relaxations B
for convex lower-bounding problems

« Designed in Julia for performance and
extensibility

— Improved user experience through
JUMP.jI

[3] Wilhelm, M.E., and Stuber, M.D. Improved Convex and Concave Relaxations of Composite Bilinear Forms. Journal of Optimization Theory and Applications. 197, 174-204 (2023).
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Parameter Estimation Example

* Oxidation of cyclohexadienyl

N 3]
ming(p,t) = > (17 = 17°)’

* Dynamic optimization problem st pefot.p"]
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[3] Wilhelm, M.E., and Stuber, M.D. Improved Convex and Concave Relaxations of Composite Bilinear Forms. Journal of Optimization Theory and Applications. 197, 174-204 (2023).
[4] Taylor, J.W., et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, The Journal of Physical Chemistry A. 108, 7193-7203 (2004).
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[4] Taylor, J.W., et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, The Journal of Physical Chemistry A. 108, 7193-7203 (2004).



Parameter Estimation Example

using CSV, DataFrames, EAGO, HiGHS, JuMP

N
data = CSV.read(joinpath(@ DIR , "kinetic_intensity data.csv"), DataFrame) min ¢(p,t) = Z(Iicalc — |ieXp)2
p ;

pL = [10.8, 16.0, 0.001]; L U

puU = [1200.0, 1200.0, 40.0]; st. pe[p ,p]
2

_X X

| calc

intensity(xA, xB, xD) = xA + (2/21)*xB + (2/21)*xD +

B,i

1 explicit euler integration{p) i k3f )
t klx Xy~ (sz +k3f)XA| o XD +——Xg,i _kS(XA,i)
K 3
1 objective(p: :Vector{VariableRef})
x = explicit euler integration(p) 3§
S5E = 8.8 i _+k4
for 1 = 1:288
55E += (intensity(x[5i-4], x[5i-3], x[5i-2]) - data[!,:intensity][i])}"2
end
return S5E
end

factory = () -» EAGO.Optimizer(SubSolvers(; r = HiGHS.Optimizer()))
model = Model(factory)

@variable(model, pL[i] <= p[i=1:3] <= pU[i])

@objective(model, Min, objective(p))

JuMP.optimize! (model)

[3] Wilhelm, M.E., and Stuber, M.D. Improved Convex and Concave Relaxations of Composite Bilinear Forms. Journal of Optimization Theory and Applications. 197, 174-204 (2023).
[4] Taylor, J.W., et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, The Journal of Physical Chemistry A. 108, 7193-7203 (2004).
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Parameter Estimation Example
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@objective(model, Min, objective(p)
JuMP.optimize! (model)
[3] Wilhelm, M.E., and Stuber, M.D. Improved Convex and Concave Relaxations of Composite Bilinear Forms. Journal of Optimization Theory and Applications. 197, 174-204 (2023).
[4] Taylor, J.W., et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, The Journal of Physical Chemistry A. 108, 7193-7203 (2004).
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@constraint(model, e7, -3.8%x
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EAGO v0.8.x
« Updated nonlinear code to account for JuMP’s major refactor
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Notable Updates

EAGO v0.8.2 :

« Updated documentation and EAGO]

examples endcion
P ®

o Overview

o Installing EAGO
o Examples
Manual

Customization

Examples

EAGO - Easy Advanced Global Optimization in Julia

A development environment for robust and global optimization in Julia.

Authors

, Department of Chemical and Biomelecular Engineering, University of Connecticut (UConn)
o Current Position: Alexion Pharmaceuticals
, Department of Chemical and Biomolecular Engineering, University of Connecticut (UConn)
, Department of Chemical and Biomolecular Engineering, University of Connecticut (UConn)

, Pratt & Whitney Associate Professor in Advanced Systems Engineering, University of
Connecticut (UConn)

If you would like to contribute,

Overview

Version | dev

AIChE Annual Meeting 2024




Notable Updates

EAGO v0.8.2 -

« Updated documentation and o
examples

Customization
Examples
Standard-Use Example 1

Standard-Use Example 2

Automatic Generation of Advanced-Use Exampe
Reduced-Space Optimization Advanced-Use Example 2
Formulations of Process ModelingToolkit Example
Systems for Faster Deterministic ® Deliing NonlinearSystem

o Modeling and Simplifying Using

Global Optimization in Julia ModelingToolit

h h . o Converting to a Standard Function
J O S e p C O I o Solving the Optimization Problem with

EAGO
o Full-Space Formulation

o References
AP Reference
Contributing
News

AIChE Annual Meeting 2024

Examples ModelingToolkit Example

ModelingToolkit Example

This example is also provided

Using ModelingToolkit NonlinearSystem models with EAGO

This is a tutorial for exporting ModelingToolkit [1] models as standard Julia functions, which can
then be used as EAGO-compatible equality constraints in JuMP models.

Defining Nonlinear System

The system of interest is derived from an example originally presented Hy [2] that involves a continuous stirred-tank
reactor (CSTR) and separator train (with recycle) for the chlorination of benzene with the following reactions taking
place:

CﬁHﬁ ar Clg — CﬁH5C] + HC1
CgH5Cl+ Cly; — CgHyCly + HC1

where the rate constants k; and k2 [ ] are known and the reactor volume V' [m?] and feed flow rate F;
[kmol/h] are considered free design variables. The CSTR is followed by a separation train for product purification
and reactant recycle.

Fy,ya.m, 0.0




Active Projects

« Integrate GPU-based methods

OPTIMIZATION METHODS & SOFTWARE IayLCgF &CFranUS [5]
https://dol.org/10.1080/10556788.2024.2396297 aylor & Francis Group

W) Check for updates

Automatic source code generation for deterministic global
optimization with parallel architectures

Robert X. Gottlieb ©, Pengfei Xu © and Matthew D. Stuber

Process Systems and Operations Research Laboratory, Department of Chemical and Biomolecular
Engineering, University of Connecticut, Storrs, CT, USA

ABSTRACT

Trends over the past two decades indicate that much of the perfor-
mance gains of commercial optimization solvers is due to improve-
ments in x86 hardware. To continue making progress, it is critical to
consider alternative/specialized massively parallel computing archi-
tectures. In this work, we detail the development of an open-source
source code transformation approach built using Symbolics. j1
to construct McCormick-based relaxations of functions that enables
their effective parallelized evaluation. We then apply this approach in
a novel parallelized branch-and-bound routine that offloads lower-
and upper-bounding problems to a GPU. The effectiveness of this
new approach is demonstrated on three nonconvex problems of
interest, where it yields convergence time improvements of 22-118x
compared to an equivalent serial CPU implementation and in two
cases outperforms vanilla branch-and-bound versions of existing
state-of-the-art solvers that use tighter bounding techniques. This
work exemplifies how deterministic global optimizers using alterna-
tive hardware architectures can compete with—or eventually out-
class—even the most powerful serial CPU implementations, and to
the best of the authors' knowledge, represents the first successful
demonstration of deterministic global optimization using a GPU.

ARTICLE HISTORY
Received 31 March 2023
Accepted 13 August 2024

KEYWORDS
Dynamical systems;
parameter estimation;
factorable programing;
open-source software;
McCormick relaxations

2020 MATHEMATICS
SUBJECT
CLASSIFICATIONS

90C26; 90-04; 65G30; 26B25;
65Y05

[5] Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic Source Code Generation for Deterministic Global Optimization With Parallel Architectures. Optimization Methods & Software. (2024).



Active Projects

*  Integrate GPU-based methods e sty B
« Update advanced functionality P
. Automatic source code generation for deterministic global
— SIP algorithms

Robert X. Gottlieb ©, Pengfei Xu © and Matthew D. Stuber

Process Systems and Operations Research Laboratory, Department of Chemical and Biomolecular
Engineering, University of Connecticut, Storrs, CT, USA

optimization with parallel architectures
— Dynamic optimizer
— Implicit routines

ABSTRACT

Trends over the past two decades indicate that much of the perfor-
mance gains of commercial optimization solvers is due to improve-
ments in x86 hardware. To continue making progress, it is critical to
consider alternative/specialized massively parallel computing archi-
tectures. In this work, we detail the development of an open-source
source code transformation approach built using Symbolics. j1
to construct McCormick-based relaxations of functions that enables
their effective parallelized evaluation. We then apply this approach in
a novel parallelized branch-and-bound routine that offloads lower-
and upper-bounding problems to a GPU. The effectiveness of this
new approach is demonstrated on three nonconvex problems of
interest, where it yields convergence time improvements of 22-118x
compared to an equivalent serial CPU implementation and in two
cases outperforms vanilla branch-and-bound versions of existing
state-of-the-art solvers that use tighter bounding techniques. This
work exemplifies how deterministic global optimizers using alterna-
tive hardware architectures can compete with—or eventually out-
class—even the most powerful serial CPU implementations, and to
the best of the authors' knowledge, represents the first successful
demonstration of deterministic global optimization using a GPU.

ARTICLE HISTORY
Received 31 March 2023
Accepted 13 August 2024

KEYWORDS
Dynamical systems;
parameter estimation;
factorable programing;
open-source software;
McCormick relaxations

2020 MATHEMATICS
SUBJECT
CLASSIFICATIONS

90C26; 90-04; 65G30; 26B25;
65Y05

[5] Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic Source Code Generation for Deterministic Global Optimization With Parallel Architectures. Optimization Methods & Software. (2024).



Active Projects

* Integrate GPU-based methods
« Update advanced functionality
— SIP algorithms
— Dynamic optimizer
— Implicit routines

« Continue to update documentation
and examples

OPTIMIZATION METHODS & SOFTWARE
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Taylor & Francis Group
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https://www.psor.uconn.edu/

Questions?

Eﬁj Q?g EAGO-notebooks

https://psorlab.github.io/EAGO.jl/dev/ https://github.com/PSORLab/EAGO-notebooks
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