
1 XVI Workshop on Global Optimization 2025 

GPU-Parallel Branch-and-Bound with 
Custom Kernels and Specialized PDLP 

Robert X. Gottlieb1 and Matthew D. Stuber1 

1Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA 

Abstract Two novel developments are detailed that are critical to hardware ac-
celeration of deterministic global optimization: automatic relaxation 
subgradient calculation on a GPU for LP relaxations, and a native 
GPU-parallel LP solver. To calculate relaxation subgradients, we rely 
on a novel method to automatically generate problem- and expression-
specifc GPU-compatible functions, with preliminary results indicat-
ing a 10–100x speedup over a CPU implementation of McCormick-
based rules. To address LPs, we developed a novel GPU-accelerated 
variant of the PDLP method. Preliminary results show increased per-
formance of up to 100x relative to commercial solvers, specifcally in 
the case of solving large numbers of small-sized LP instances. Subse-
quently, we combine these two developments to form a GPU-accelerated 
global optimizer. The performance of these developments are demon-
strated on a range of problems, across different hardware capabilities, 
and against existing commercial solvers. 

Keywords: SIMD Parallelization, Global Optimization, Branch-and-Bound 

1. Introduction 

Modern tools for deterministic global optimization (DGO) use a variety 
of advanced techniques to solve problems that were once considered in-
tractable. Such techniques include reformulations to more easily solvable 
problem forms [1], specialized domain reduction techniques [2], and the 
development of improved relaxations or envelopes of critical functional 
forms [3, 4], among others. However, these techniques alone are not suff-



2 Robert X. Gottlieb and Matthew D. Stuber 

cient to render all DGO problems tractable, and for many problems of prac-
tical interest, obtaining a solution still requires processing thousands or 
millions of branch-and-bound (B&B) nodes. For these problems, process-
ing power and calculation throughput are critical factors that determine 
how quickly a global solution can be found. In other felds that faced a sim-
ilar computational bottleneck, such as in machine learning model training 
[5], the dominant strategy has become the use of parallel processing hard-
ware such as graphics processing units (GPUs). While new tools and tech-
niques continue to make many DGO problems solvable, a move toward 
parallelization using GPU hardware would serve to increase the solution 
speed for a wide variety of the most challenging problems via faster calcu-
lation throughput. 

To the best of our knowledge, all existing DGO solvers—besides our 
solver [6]—are designed to run exclusively on CPU hardware. For a GPU-
based global solver, one of the challenges is aligning the B&B algorithm 
with the strengths of the hardware. Particularly, GPU-based local solvers 
typically become more effective on large-scale instances, such as the NLP 
solver MadNLP.jl [8], which realizes a speedup over a CPU implementa-
tion on problem instances with more than 20,000 variables. DGO problems 
are typically several orders-of-magnitude smaller than this, which implies 
that individual bounding subproblems are unlikely to beneft from GPU 
acceleration. Instead, in this work, we focus on simultaneously processing 
large numbers of B&B nodes, aligning the size of the B&B node stack with 
the parallelization capacity of GPUs. 

The state-of-the-art approach for obtaining B&B node lower bounds is 
to construct linear programs (LPs) from subtangent hyperplanes of relax-
ations of the objective and constraints. Consequently, and as discussed in 
[7], a GPU-based DGO solver would need two key features to be competi-
tive with existing solvers: a method of calculating relaxation subgradients, 
and a method of solving LPs. In this paper, we detail our development of 
GPU-parallel implementations of these two features, each with the goal of 
addressing many B&B nodes simultaneously. 

2. Implementations and Results 

GPU-Parallel Relaxation Subgradients. In this work, we utilize a 
source-code generation approach to compute McCormick-based relaxations 
of functions on a GPU—conceptually similar to our previous work [6]—in 
an entirely novel way. This approach contrasts the operator overloading-
like scheme used by McCormick.jl [9]. Given an input expression, such as 
a symbolically defned objective function or constraint, we begin by per-

https://McCormick.jl
https://MadNLP.jl


3 Enhanced ParBB and PDLP 

forming a factorization of the expression to generate a primal trace. We 
then apply transformations as desired, such as automatically identifying 
mathematical forms for which specialized relaxation rules exist and substi-
tuting those expressions. From this modifed primal trace, we are prepared 
to construct numerical functions for evaluation. 

Finally, the primal trace is parsed and a GPU-compatible function (a 
“kernel”) is automatically generated that sequentially applies generalized 
McCormick rules to its inputs (variables and their domains) to calculate 
relaxations (and their subgradients) of the original expression on the given 
variable domains. The generation of such kernels, valid on any subdomain, 
is possible because the objective and constraints of a problem are identi-
cal across B&B nodes. This also allows us to exploit problem sparsity, both 
here and in our LP solver, to speed up calculations. These custom, problem-
specifc kernels apply GPU parallelization to return relaxations for many 
B&B nodes simultaneously, each of which necessarily has a unique do-
main. From preliminary testing, this approach outperforms McCormick.jl 
[9] over a range of expression complexities by roughly 10–100x. 

GPU-Parallel LP Solver. Standard approaches for solving LPs are 
mostly variants of the simplex and interior point methods, although in re-
cent years, frst-order methods have become more popular due to their 
potential for easier GPU acceleration. A notable recent development is the 
PDLP algorithm [10], and its open-source GPU implementation cuPDLP.jl 
[11]. In this work, we develop a cuPDLP.jl-based solver that scales with 
the number of LPs solved as opposed to instance size, with the primary fo-
cus being the smaller LPs encountered in B&B lower-bounding procedures. 
Additionally, since the goal is to incorporate this solver into a B&B scheme, 
and we generate relaxation subgradients on GPUs, we eliminate the ex-
pensive step of transferring LP instances between CPU and GPU memory. 
Effectively, the global optimizer would handle node organization, domain 
reduction, and the upper-bounding problems using the CPU, and would 
offoad the entirety of the lower-bounding work, which is generally the 
most time-intensive step, to the GPU. 

Similar to the novel relaxation approach presented in this work, the per-
formance of this version of PDLP scales with the number of LPs being 
solved. Preliminary benchmark results shown in Table 1 indicate speed 
improvements of up to 100x relative to commercial LP solvers on small 
problems. We attribute this to the lack of CPU-GPU memory transfer, the 
specialized use case of handling multiple LPs, and the focus on compara-
tively small LP instances. 

https://cuPDLP.jl
https://McCormick.jl


4 Robert X. Gottlieb and Matthew D. Stuber 

Table 1: Average solve times over 20480 LP instances generated from affne 
relaxations of partitioned examples from the MINLPLib database. Paral-
lelized PDLP solves LPs in parallel in a GV100 GPU, and GLPK solves LPs 
in serial on an Intel Xeon W-2195 CPU. This version of GPU-accelerated 
PDLP is most dominant on extremely small LPs and at weaker tolerance. 

Example Variables Constraints 
Avg. Solution Time (µs) 

Parallelized PDLP GLPK 
1E-8 Tol. 1E-4 Tol. 1E-8 Tol. 1E-4 Tol. 

ex4 1 1 1 0 1.186 0.665 75.238 73.944 
rbrock 2 0 0.661 0.323 78.462 75.092 
ex3 1 1 8 6 5.676 5.538 104.361 103.909 
chem 11 4 23.655 13.132 137.179 143.991 
ramsey 33 22 18.066 18.102 204.618 213.732 
lakes 90 78 749.429 749.268 1144.600 1155.039 

3. Conclusion 

In this work, we discuss our latest GPU-accelerated relaxation subgradi-
ent technique and describe the implementation of a GPU-parallelized LP 
solver based on PDLP. We aim to demonstrate the strengths of these ap-
proaches across numerical experiments and a range of hardware capabil-
ities. We also aim to demonstrate how these approaches can be paired to-
gether into a GPU-accelerated DGO solver, and compare its performance 
on benchmark test sets against commercial solvers. 

References 

[1] Amarger, R.J. et al. (1992). An automated modelling and reformulation system 
for design optimization. Comput. Chem. Eng. 16(7): 623–636. 

[2] Zhang, Y. et al. (2020). Optimality-based domain reduction for inequality-
constrained NLP and MINLP problems. J. Global Optim. 77(3): 425–454. 

[3] Wilhelm, M.E. and Stuber, M.D. (2023). Improved convex and concave relax-
ations of composite bilinear forms. J. Optim. Theory and Appl. 197: 174–204. 

[4] Wilhelm, M.E. et al. (2022). Convex and concave envelopes of artifcial neu-
ral network activation functions for deterministic global optimization. J. Global 
Optim. 85: 569–594. 

[5] Abadi, M. et al. (2016). Tensorfow: Large-scale machine learning on heteroge-
neous distributed systems. doi: 10.48550/ARXIV.1603.04467 



5 Enhanced ParBB and PDLP 

[6] Gottlieb, R.X. et al. (2024). Automatic source code generation for deterministic 
global optimization with parallel architectures. Optim. Methods Software. 1–39. 

[7] Gottlieb, R.X. and Stuber, M.D. (2024). GPU-accelerated deterministic global 
optimization. In: ISMP 2024, Montréal, Canada. 

[8] Shin, S. et al. (2024). Accelerating optimal power fow with GPUs: SIMD ab-
straction of nonlinear programs and condensed-space interior-point methods. 
Electr. Power Syst. Res. 236: 110651. 

[9] Wilhelm, M.E. et al. (2020). PSORLab/McCormick.jl. URL: 
https://github.com/PSORLab/McCormick.jl 

[10] Applegate, D., et al. (2021). Practical large-scale linear programming using 
primal-dual hybrid gradient. doi: 10.48550/ARXIV.2106.04756. 

[11] Lu, H. and Yang, J. (2024). cuPDLP.jl: A GPU implementation of 
restarted primal-dual hybrid gradient for linear programming in Julia. doi: 
10.48550/ARXIV.2311.12180. 

https://cuPDLP.jl
https://github.com/PSORLab/McCormick.jl
https://PSORLab/McCormick.jl



