XVI Workshop on Global Optimization 2025 1

GPU-Parallel Branch-and-Bound with
Custom Kernels and Specialized PDLP

Robert X. Gottlieb! and Matthew D. Stuber!
LChemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA

Abstract Two novel developments are detailed that are critical to hardware ac-
celeration of deterministic global optimization: automatic relaxation
subgradient calculation on a GPU for LP relaxations, and a native
GPU-parallel LP solver. To calculate relaxation subgradients, we rely
on a novel method to automatically generate problem- and expression-
specific GPU-compatible functions, with preliminary results indicat-
ing a 10-100x speedup over a CPU implementation of McCormick-
based rules. To address LPs, we developed a novel GPU-accelerated
variant of the PDLP method. Preliminary results show increased per-
formance of up to 100x relative to commercial solvers, specifically in
the case of solving large numbers of small-sized LP instances. Subse-
quently, we combine these two developments to form a GPU-accelerated
global optimizer. The performance of these developments are demon-
strated on a range of problems, across different hardware capabilities,
and against existing commercial solvers.

Keywords: SIMD Parallelization, Global Optimization, Branch-and-Bound

1. Introduction

Modern tools for deterministic global optimization (DGO) use a variety
of advanced techniques to solve problems that were once considered in-
tractable. Such techniques include reformulations to more easily solvable
problem forms [1], specialized domain reduction techniques [2], and the
development of improved relaxations or envelopes of critical functional
forms [3, 4], among others. However, these techniques alone are not suffi-

2 Robert X. Gottlieb and Matthew D. Stuber

cient to render all DGO problems tractable, and for many problems of prac-
tical interest, obtaining a solution still requires processing thousands or
millions of branch-and-bound (B&B) nodes. For these problems, process-
ing power and calculation throughput are critical factors that determine
how quickly a global solution can be found. In other fields that faced a sim-
ilar computational bottleneck, such as in machine learning model training
[5], the dominant strategy has become the use of parallel processing hard-
ware such as graphics processing units (GPUs). While new tools and tech-
niques continue to make many DGO problems solvable, a move toward
parallelization using GPU hardware would serve to increase the solution
speed for a wide variety of the most challenging problems via faster calcu-
lation throughput.

To the best of our knowledge, all existing DGO solvers—besides our
solver [6]—are designed to run exclusively on CPU hardware. For a GPU-
based global solver, one of the challenges is aligning the B&B algorithm
with the strengths of the hardware. Particularly, GPU-based local solvers
typically become more effective on large-scale instances, such as the NLP
solver MadNLP. j1 [8], which realizes a speedup over a CPU implementa-
tion on problem instances with more than 20,000 variables. DGO problems
are typically several orders-of-magnitude smaller than this, which implies
that individual bounding subproblems are unlikely to benefit from GPU
acceleration. Instead, in this work, we focus on simultaneously processing
large numbers of B&B nodes, aligning the size of the B&B node stack with
the parallelization capacity of GPUs.

The state-of-the-art approach for obtaining B&B node lower bounds is
to construct linear programs (LPs) from subtangent hyperplanes of relax-
ations of the objective and constraints. Consequently, and as discussed in
[7], a GPU-based DGO solver would need two key features to be competi-
tive with existing solvers: a method of calculating relaxation subgradients,
and a method of solving LPs. In this paper, we detail our development of
GPU-parallel implementations of these two features, each with the goal of
addressing many B&B nodes simultaneously.

2. Implementations and Results

GPU-Parallel Relaxation Subgradients. In this work, we utilize a
source-code generation approach to compute McCormick-based relaxations
of functions on a GPU—conceptually similar to our previous work [6]—in
an entirely novel way. This approach contrasts the operator overloading-
like scheme used by McCormick. j1 [9]. Given an input expression, such as
a symbolically defined objective function or constraint, we begin by per-

https://McCormick.jl
https://MadNLP.jl

Enhanced ParBB and PDLP 3

forming a factorization of the expression to generate a primal trace. We
then apply transformations as desired, such as automatically identifying
mathematical forms for which specialized relaxation rules exist and substi-
tuting those expressions. From this modified primal trace, we are prepared
to construct numerical functions for evaluation.

Finally, the primal trace is parsed and a GPU-compatible function (a
“kernel”) is automatically generated that sequentially applies generalized
McCormick rules to its inputs (variables and their domains) to calculate
relaxations (and their subgradients) of the original expression on the given
variable domains. The generation of such kernels, valid on any subdomain,
is possible because the objective and constraints of a problem are identi-
cal across B&B nodes. This also allows us to exploit problem sparsity, both
here and in our LP solver, to speed up calculations. These custom, problem-
specific kernels apply GPU parallelization to return relaxations for many
B&B nodes simultaneously, each of which necessarily has a unique do-
main. From preliminary testing, this approach outperforms McCormick. j1
[9] over a range of expression complexities by roughly 10-100x.

GPU-Parallel LP Solver. Standard approaches for solving LPs are
mostly variants of the simplex and interior point methods, although in re-
cent years, first-order methods have become more popular due to their
potential for easier GPU acceleration. A notable recent development is the
PDLP algorithm [10], and its open-source GPU implementation cuPDLP. j1
[11]. In this work, we develop a cuPDLP. j1-based solver that scales with
the number of LPs solved as opposed to instance size, with the primary fo-
cus being the smaller LPs encountered in B&B lower-bounding procedures.
Additionally, since the goal is to incorporate this solver into a B&B scheme,
and we generate relaxation subgradients on GPUs, we eliminate the ex-
pensive step of transferring LP instances between CPU and GPU memory.
Effectively, the global optimizer would handle node organization, domain
reduction, and the upper-bounding problems using the CPU, and would
offload the entirety of the lower-bounding work, which is generally the
most time-intensive step, to the GPU.

Similar to the novel relaxation approach presented in this work, the per-
formance of this version of PDLP scales with the number of LPs being
solved. Preliminary benchmark results shown in Table 1 indicate speed
improvements of up to 100x relative to commercial LP solvers on small
problems. We attribute this to the lack of CPU-GPU memory transfer, the
specialized use case of handling multiple LPs, and the focus on compara-
tively small LP instances.

https://cuPDLP.jl
https://McCormick.jl

4 Robert X. Gottlieb and Matthew D. Stuber

Table 1: Average solve times over 20480 LP instances generated from affine
relaxations of partitioned examples from the MINLPLib database. Paral-
lelized PDLP solves LPs in parallel in a GV100 GPU, and GLPK solves LPs
in serial on an Intel Xeon W-2195 CPU. This version of GPU-accelerated
PDLP is most dominant on extremely small LPs and at weaker tolerance.

Avg. Solution Time (us)
Example | Variables | Constraints | Parallelized PDLP GLPK
1E-8 Tol. | 1E-4 Tol. | 1E-8 Tol. | 1E-4 Tol.
ex4_1.1 1 0 1.186 0.665 75.238 73.944
rbrock 2 0 0.661 0.323 78.462 75.092
ex3_1_1 8 6 5.676 5.538 | 104.361 103.909
chem 11 4 23.655 13.132 | 137.179 143.991
ramsey 33 22 18.066 18.102 | 204.618 213.732
lakes 90 78 749.429 749.268 | 1144.600 1155.039
3. Conclusion

In this work, we discuss our latest GPU-accelerated relaxation subgradi-
ent technique and describe the implementation of a GPU-parallelized LP
solver based on PDLP. We aim to demonstrate the strengths of these ap-
proaches across numerical experiments and a range of hardware capabil-
ities. We also aim to demonstrate how these approaches can be paired to-
gether into a GPU-accelerated DGO solver, and compare its performance
on benchmark test sets against commercial solvers.

References

[1] Amarger, R]. et al. (1992). An automated modelling and reformulation system
for design optimization. Comput. Chem. Eng. 16(7): 623-636.

[2] Zhang, Y. et al. (2020). Optimality-based domain reduction for inequality-
constrained NLP and MINLP problems.]. Global Optim. 77(3): 425-454.

[3] Wilhelm, M.E. and Stuber, M.D. (2023). Improved convex and concave relax-
ations of composite bilinear forms. J. Optim. Theory and Appl. 197: 174-204.

[4] Wilhelm, M.E. et al. (2022). Convex and concave envelopes of artificial neu-
ral network activation functions for deterministic global optimization. J. Global
Optim. 85: 569-594.

[5] Abadi, M. et al. (2016). Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems. doi: 10.48550/ ARXIV.1603.04467

Enhanced ParBB and PDLP 5

[6] Gottlieb, R.X. et al. (2024). Automatic source code generation for deterministic
global optimization with parallel architectures. Optim. Methods Software. 1-39.

[7] Gottlieb, R.X. and Stuber, M.D. (2024). GPU-accelerated deterministic global
optimization. In: ISMP 2024, Montréal, Canada.

[8] Shin, S. et al. (2024). Accelerating optimal power flow with GPUs: SIMD ab-
straction of nonlinear programs and condensed-space interior-point methods.
Electr. Power Syst. Res. 236: 110651.

[9] Wilhelm, M.E. et al (2020). PSORLab /McCormick.jl. URL:
https://github.com/PSORLab/McCormick. j1

[10] Applegate, D., et al. (2021). Practical large-scale linear programming using
primal-dual hybrid gradient. doi: 10.48550/ ARXIV.2106.04756.

[11] Lu, H. and Yang, J. (2024). cuPDLPjl: A GPU implementation of

restarted primal-dual hybrid gradient for linear programming in Julia. doi:
10.48550/ ARXIV.2311.12180.

https://cuPDLP.jl
https://github.com/PSORLab/McCormick.jl
https://PSORLab/McCormick.jl

