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We present a deterministic global optimization method for
nonlinear programming formulations constrained by stiff sys-
tems of ordinary differential equation (ODE) initial value
problems (IVPs). The examples arise from dynamic opti-
mization problems exhibiting both fast and slow transient
phenomena commonly encountered inmodel-based systems
engineering applications. The proposed approach utilizes
unconditionally-stable implicit integration methods to re-
formulate the ODE-constrained problem into a nonconvex
nonlinear program (NLP) with implicit functions embedded.
This problem is then solved to global optimality in finite
time using a spatial B&B framework utilizing convex/concave
relaxations of implicit functions constructed by a method
which fully exploits problem sparsity. The algorithms were
implemented in the Julia programming language within the
EAGO.jl package and demonstrated on five illustrative ex-
ampleswith varying complexity relevant in process systems
engineering. The developed methods enable the guaran-
teed global solution of dynamic optimization problemswith
stiff ODE-IVPs embedded.
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Introduction

Dynamic optimization problems of the form:

φ∗ = min
p∈P ⊂Ònp

φ (x(p, tf ), p)

s.t. ¤x(p, t ) = f(x(p, t ), p, t ), [t ∈ I = [t0, tf ] (1)

x(p, t0) = x0 (p)

g(x(p, tf ), p) ≤ 0

are of extreme importance to process systems engineers and the broader model-based systems engineering commu-
nity as they can be formulated for a variety of systems whose transient behavior is of particular interest, from optimal
control to mechanistic model validation. The first major complicating detail of the optimization formulation (1) is that
it is constrained by a system of ODE-IVPs. Therefore, simply verifying a feasible point requires the solution of a sys-
tem of ODE-IVPs. The second major complicating detail is that (1) is a nonconvex program, in general, and therefore
verifying optimality requires deterministic global optimization. The focus of this paper is on solving (1) to guaranteed
global optimality (or declaration of infeasibility). The methods developed in this work are of specific importance when
the ODE-IVP system is stiff.

Methods for solving (1) rigorously to global optimality rely on the spatial branch-and-bound (B&B) framework 1,2

or some variant. The B&B algorithm requires the ability to calculate rigorous upper and lower bounds on the global
optimal solution value. An upper bound can be calculated by simply evaluating φ (x( · , tf ), · ) at any feasible point.
However, calculating rigorous lower bounds poses significant challenges as this step requires that rigorous and accu-
rate global bounds are known or are readily calculable for all variables and functions of (1). For standard nonconvex
NLPs (i.e., without dynamical systems constraints), rigorous lower bounds on the optimal solution value are obtained
by calculating convex and concave relaxations of the functions and solving a corresponding convex lower-bounding
problem. Applying this approach to a dynamic optimization problem (1) requires rigorous bounds and relaxations of
the solution of the parametric ODE-IVPs x(p, t ) are calculable which are valid for all parameter values p ∈ P at every
instance in time t ∈ I . Bounding solutions of parametric ODE-IVPs is still an open and active area of research.

The first rigorous methods for solving (1) to global optimality were introduced by Papamichail and Adjiman 3

which utilized the αBB convex relaxations4,5, and by Singer and Barton 6,7 utilizing McCormick-based relaxations8.
These approaches summarily utilized auxiliary ODE-IVP systems based on differential inequalities whose solutions
were theoretically guaranteed to provide rigorous bounds on the set of parametric solutions (i.e., the reachable set) of
the original ODE-IVP system. This relax-then-discretize approach has been the basis of much of the advances that fol-
lowed9,10,11,12,13,14,15 which have focused heavily on advancing theory for improving the tightness and computational
efficiency of calculating bounds and relaxations on solutions of parametric ODE-IVPs. In the differential inequalities
approach, implicit integration routines may be employed to solve the auxiliary ODE-IVP system using either in-house
(e.g., GDOC16) or state-of-the-art software packages (e.g., CVODES17)7,10,13. Implicit integration approaches have
typically been chosen as the bounding ODE-IVP systems may themselves be stiff and stepsizes may be chosen in
an adaptive fashion to achieve the specified accuracy for these auxiliary equations. In the case of CVODES, variable
order Adams-Moulton or backward difference formula (BDF) methods are used by default.

Within the past 10 years, other theoretical developments have been made which enable the calculation of rigor-
ous bounds and relaxations of the reachable set using an alternative approach referred to as discretize-then-relax. This
method makes use of a two-step bounding approach to construct relaxations utilizing an explicit integration scheme.
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First, valid interval bounds over each timestep are determined via the application of validated interval Taylor models.
In a second step, relaxations at specific pointwise-in-time values are refined using interval bounds tightening based on
McCormick relaxations18,19,20,21. In this approach, the fixed-point interval inclusion tests for existence and unique-
ness of solutions limit stepsizes which can be used. The ultimate result is a method which provides valid bounds for
the entire exact parametric solution set of the ODE-IVP and at every pointwise-in-time value queried.

An alternative approach to the relax-then-discretize and discretize-then-relax methods discussed above is the
calculation of bounds and relaxations of discrete-time approximations. Minimal work has been done on constructing
rigorous bounds and relaxations of numerical solutions of parametric ODE-IVPs. This strategy was first demonstrated
using McCormick-based relaxations on a dynamic kinetic parameter estimation problem discretized using the explicit
(forward) Euler scheme22. More recently, a discrete-time differential inequalities approach was developed utilizing
the explicit Euler scheme23. However, stiff systems present significant computational and numerical challenges to
explicit integration methods as stepsizes need to be dramatically reduced to avoid spurious oscillations in the solution
trajectories, which in turn dramatically increases the total computational cost of the numerical integration procedure
or causes it to fail as stepsizes become infinitesimally small. Recently, a theory for calculating relaxations of implicit
functions was developed24 which enabled the calculation of rigorous relaxations of solutions of parametric linear and
nonlinear algebraic systems of equations. These methods were demonstrated for the first time by solving the dynamic
kinetic parameter estimation problem of Singer 7 and Mitsos et al. 22 to global optimality using the implicit (backward)
Euler integration scheme24.

In this work, a new method for rigorously solving nonconvex optimization problems with stiff ODE-IVP con-
straints is presented, which extends the initial work of Stuber et al. 24 to more accurate higher-order numerically-
stable implicit integration schemes. The proposed approach reformulates the dynamic optimization problem (1) into
a nonconvex NLP with equality constraints that are constructed by applying a numerically-stable implicit integration
scheme to the ODE-IVP system. Our approach differs from discretizing the dynamic problem (1) using a chosen in-
tegration scheme and solving the resulting NLP via a global optimizer. In the latter case, many of the resulting NLPs
will contain hundreds if not hundreds of thousands of nonlinear equality constraints with multiple nonlinear terms.
Moreover, the discretized problemmust include all the discrete state variables in the decision space. Due to the curse-
of-dimensionality, even the best-in-class commercial global optimizers (e.g. BARON 25, ANTIGONE26) have difficulty
solving such high-dimensional problems. In our reduced-space approach, equality constraints are subsequently elimi-
nated from the final formulation by utilizing the method of Stuber et al. 24 and embedding within the objective and
inequality constraint functions the state variables as an implicit function of the parameters. This implicit function is
the numerical approximation of the exact parametric solution of the ODE-IVP system. Further, the theory of bounds
and relaxations of implicit functions24 is employed within a B&B framework to solve the NLP with implicit functions
embedded to guaranteed global optimality. No assumption is made about the existence of an explicit closed-form
solution of the ODE-IVP system and therefore this approach can be applied to arbitrarily complex nonlinear models.

This paper is arranged as follows. In the next section, the mathematical preliminaries and background are intro-
duced. In the subsequent section, the optimization problem will be formulated, which is followed by the presentation
of algorithms for calculating relaxations of implicit functions that are the numerical approximations of parametric so-
lutions of stiff ODE-IVPs. Lastly, the proposed approach is demonstrated on five relevant numerical examples, which
is followed by a discussion and conclusion section.
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Background

Interval Arithmetic

Throughout this article, A = [aL , aU ] will represent an n-dimensional interval that is a nonempty compact set defined
as A = {a ∈ Òn : aL ≤ a ≤ aU } with aL and aU the lower and upper bounds of the interval, respectively. A set
An is defined as the Cartesian product An = A × A × · · · × A. Further, let ÉÒn = { [aL , aU ] ⊂ Òn } be the set of all
n-dimensional real intervals and for any D ⊂ Òn , ÉD = {A ∈ ÉÒn : A ⊂ D } is the set of all interval subsets of D . The
interior of an n-dimensional interval is denoted int(A) and is defined as the open set containing all points which do
not strictly lie on the bounds of A. The image of A under the mapping f : D → Òn will be denoted f(A) whereas an
inclusion monotonic interval extension of f on A will be denoted F (A) . From the Fundamental Theorem of Interval
Analysis (Thm. 1.4.1 in Neumaier 27), we have f(A) ⊂ F (A), [A ∈ ÉD .

Parametric Ordinary Differential Equations

Consider a system of parametric ODE-IVPs:

¤x(p, t ) = dx
d t
(p, t ) = f(x(p, t ), p, t ), t ∈ I = [t0, tf ], p ∈ P (2)

x(p, t0) = x0 (p), p ∈ P

with mappings f : D ×Π×T → Ònx and x0 : P → D , with D ⊂ Ònx , Π ⊂ Ònp , andT ⊂ Ò open with P ∈ ÉΠ and I ∈ ÉT .

Assumption 1 The parametric ODE-IVP system (2) satisfies the following conditions:

1. x0 : P → D is locally Lipschitz continuous on P .
2. f is continuously differentiable on D × Π ×T .

A solution of (2) is any continuous x : P × I → D such that, for every p ∈ P , x(p, · ) : T → D is continuously
differentiable and satisfies (2) on I . Further, it is assumed that a unique solution exists over the time domain I for
every p ∈ P .

Deterministic Global Optimization

Nearly all deterministic global optimization routines rely on a variation of the B&B algorithm 28. During the course
of this routine, the decision space is iteratively partitioned into subdomains which are fathomed based on computed
lower and upper bounds as well as subproblem feasibility. The lower bounds are computed by solving relaxed (un-
derestimating) optimization subproblems2. These relaxed problems can be constructed from the relaxations of the
objective and constraint functions. We follow this approach herein motivating the discussion of relaxations below.

Definition 1 (Convex and Concave Relaxations22) Given a convex set Z ⊂ Òn and a function f : Z → Ò, a convex
function f cv : Z → Ò is a convex relaxation of f on Z if f cv (z) ≤ f (z) for every z ∈ Z . A concave function f cc : Z → Ò

is a concave relaxation of f on Z if f cc (z) ≥ f (z) for every z ∈ Z .

Note that this definition involves scalar functions. However, convex and concave relaxations of vector valued func-
tions f : Z → Òn are defined by applying the above inequalities componentwise24.
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Definition 2 (McCormick Relaxation22) Relaxations of factorable functions that are formed from the recursive applica-
tion of univariate composition, binary multiplication, and binary addition from convex and concave relaxations of univariate
intrinsic functions, without the introduction of auxiliary variables, are referred to asMcCormick relaxations.

Definition 3 (Subgradients24) Let Z ⊂ R n be a nonempty convex set, f cv : Z → Ò be convex and f cc : Z → Ò be
concave. A function scv

f
: Z → Òn is a subgradient of f cv on Z if for each z̄ ∈ Z , f cv (z) ≤ f cv (z̄) +scv

f
(z̄)T (z− z̄), [z ∈ Z .

Similarly, a function scc
f

: Z → Òn is a subgradient of f cc on Z if for each z̄ ∈ Z , f cc (z) ≥ f cc (z̄) + scc
f
(z̄)T (z− z̄), [z ∈ Z .

Note that subgradients of vector-valued functions and subgradients of matrix-valued functions will be defined analo-
gously and will be matrix-valued functions and 3rd-order tensor-valued functions, respectively.

Definition 4 (Composite Relaxations24: uG , oG ) Let D ⊂ Òn , Z ∈ ÉD , and P ∈ ÉÒnp . Define the mapping G : D × P →
Òn . The functions uG , oG : Òn ×Òn × P → Òn are called composite relaxations of G on Z × P if for anyψcv ,ψcc : P →
Òn , the functions uG (ψcv ( · ),ψcc ( · ), · ) and oG (ψcv ( · ),ψcc ( · ), · ) are, respectively, convex and concave relaxations of
G(q( · ), · ) on P for any function q : P → Z and any pair of convex and concave relaxations (ψcv ,ψcc ) of q on P .

Remark In this paper, composite relaxations are computed using the generalizedMcCormick relaxation framework 29.

Definition 5 (ūG , ōG 24) Let uG , oG be composite relaxations of G : D × P → Òn on Z × P . The functions ūG , ōG :
Òn ×Òn × P → Òn will be defined as

ūG (ψcv ,ψcc , p) ≡ max{ψcv , uG (ψcv ,ψcc , p) },

ōG (ψcv ,ψcc , p) ≡ min{ψcc , oG (ψcv ,ψcc , p) },

[(ψcv ,ψcc , p) ∈ Òn ×Òn × P with themax/min operations applied componentwise.

Definition 6 (Composite Subgradients24: SuG , SoG ) Let D ⊂ Òn , P ∈ ÉÒnp , and Z ∈ ÉD . Let q : P → Z and G :
D × P → Òn . Let uG , oG be composite relaxations of G on Z × P . The functions SuG , SoG : Òn × Òn × Ònp×n × Ònp×n ×
P → Ònp×n are called composite subgradients of uG and oG on Z × P , respectively, if for any ψcv ,ψcc : P → Òn and
scvψ , sccψ : P → Ònp×n , the functions SuG (ψcv ( · ),ψcc ( · ), scvψ ( · ), sccψ ( · ), · ) and SoG (ψcv ( · ),ψcc ( · ), scvψ ( · ), sccψ ( · ), · )
are, respectively, subgradients of uG and oG , provided ψcv and ψcc are, respectively, convex and concave relaxations of q
on P and scvψ and sccψ are, respectively, subgradients ofψcv andψcc on P .

Note, that these definitions are included for completeness and future reference. The reader is directed to Stuber et
al.24 for the full definitions of relaxations and subgradients (omitted for brevity) as they pertain to implicit functions
and to Scott et al.29 for the generalized McCormick relaxation theory on which these results are based.
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Optimization Problem Formulation

In this section, we formalize the dynamic optimization problem within the context of the implicit function approach
detailed in this work. The dynamic optimization problem (1) is generalized as:

φ∗ = min
p∈P ⊂Ònp

φ (x(p, τ0), x(p, τ1), . . . , x(p, τq ), . . . , x(p, τQ ), p)

s.t. ¤x(p, t ) = f(x(p, t ), p, t ), [t ∈ I = [t0, tf ] (3)

x(p, t0) = x0 (p)

g(x(p, τ0), x(p, τ1), . . . , x(p, τq ), . . . , x(p, τQ ), p) ≤ 0

where φ : D × D × · · · × D × Π → Ò and g : D × · · · × D × · · · × D × Π → Òng are continuously differentiable on
their domains. The formulation (3) is the most practical general dynamic optimization formulation which explicitly
accounts for the objective function and inequality constraints having dependence on specific discrete time points τq
with q ∈ {0, 1, . . . ,Q }. Note, the objective function and constraints don’t necessarily need to reference the same
discrete time points tq but are represented here as such for notational convenience and simplicity.

We consider discretizing the time domain I into K = (tf − t0)/∆t timesteps, where ∆t > 0 is the stepsize. The
differential constraint is then discretized at discrete time points tk with k ∈ {0, 1, . . . ,K } where tK = tf , which are
potentially distinct from the discrete time points τq . This can be viewed as a generalization of (1) to a larger number
of discrete points. We assume that a factorable mapping κ : ÒnxK → ÒnxQ exists which computes the elements of
{x(p, τq ) }Qq=1 from the elements of {x(p, tk ) }Kk=1. In many of the cases subsequently addressed, an injective mapping
of elements of {x(p, τq ) }Qq=1 into {x(p, tk ) }

K
k=1 exists. That is to say, the discretization points τq used to evaluate the

objective and inequality constraint functions are simply a subset of the discretization points tk used to approximate the
continuous-time system as a discrete-time system. When disparate indexes are desired for discretization, interpolation
is used to compute the remaining state variables. Linear interpolation may be written as a linear combination of two
state variables with nonnegative coefficients as shown in (4). As a result, the interpolated relaxation is subject to order
2 interpolation error and the McCormick relaxation is generally nonexpansive. For tk−1 ≤ τq ≤ tk , the interpolated
state variable is given by:

λ :=
τq − tk−1
tk − tk−1

(4)

x(p, τq ) := λx(p, tk ) + (1 − λ)x(p, tk−1) .

Note that composite relaxation of g and φ can be defined to contain any factorable interpolation function. As
such, we can assume without loss of generality that the problem may be formulated with respect to only tk discrete
time points.

Discretizing the system of ODE-IVPs and applying an implicit integration scheme effectively reformulates the
system of nx ODE-IVPs into a system of nx × K (nonlinear) algebraic equations. Therefore, (3) is reformulated from a
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dynamic optimization problem to a standard (nonconvex) NLP as:

φ∗ = min
(ẑ,p)∈Z×P

φ (ẑ, p)

s.t. h(ẑ, p) = 0 (5)

ẑ0 = x0 (p)

g(ẑ, p) ≤ 0

where ẑ ∈ Z ∈ ÉD k+1 with ẑ = (ẑ0, ẑ1, . . . , ẑK ) as the vector of state variables for each discrete time point tk ∈
{0, . . . ,K } with ẑ0 specified by the initial condition x0 (p) , and h : D × · · · ×D × P → ÒnxK is the system of (nonlinear)
algebraic equations formed by applying the implicit integration scheme. Note, the exact procedure (i.e., integration
scheme) employed to formulate the discretized system h determines the accuracy of the numerical solution of the
system of ODE-IVPs versus the true solution.

Assumption 2 There exists a unique implicit function zk : P → D for k = 0, 1, . . . ,K such that h(z(p), p) = 0 holds for all
p ∈ P with z = (x0, z1, z2, . . . , zK ) .

No discretization scheme can ensure that the above assumption holds for all possible ODE-IVPs. Failure of a
traditional implicit integrator may occur around singular points. Most integrators make an adaptive choice of stepsizes
to ensure that the resulting system of equations is nonsingular. If a stepsize is selected that is near machine precision,
the integrator will typically throw an error. We will present sufficient conditions to ensure that no singular system is
contained in the domain of interest in the Relaxation Algorithm section.

By making use of Assumption 2, we can reformulate the discretized problem (5) into the implicit form as:

φ∗ =min
p∈P

φ (z(p), p)

s.t. g(z(p), p) ≤ 0. (6)

It is worth noting that the full-space equality-constrained formulation (5) has nx × (K + 1) + np decision variables,
whereas the reduced-space formulation (6) has just np . This reduction in dimensionality does come at the cost of
increased computational complexity associated with the calculation of bounds and relaxations of implicit functions 24.
However, the benefit of this approach is the dramatically reduced number of timesteps needed to evaluate numerically
(with potentially improved accuracy) the solution of the stiff ODE-IVP system over explicit integration approaches
requiring very small stepsizes for maintaining numerical stability.

It is worth mentioning that the reformulation (5) is very closely related to that of the collocation approaches 30,31.
However, since this work is motivated by solving (1) to guaranteed global optimality, the focus moving forward is on
providing rigorous bounds on the states (and the functions that are composed with them), which will be used by the
B&B algorithm for deterministic search. Thus, the implicit formulation (6) is presented, which is also referred to as a
"feasible-path method" since the implicit function z(p) (i.e., the discrete-time solution of the ODE-IVPs) is a feasible
point with respect to the equality constraints h when evaluated at p ∈ P .



8 M. Wilhelm et al.

Relaxation Algorithm

In this section, the methods are developed for calculating convex and concave relaxations of implicit functions that
are numerical solutions of parametric ODE-IVPs (2). The conceptualization of these relaxations is illustrated in Figure
1. Specifically, in this section we develop methods for relaxing implicit functions via the relaxation of second-order
implicit numerical integration schemes.

p
]

]

P

k
t( )cv

k
z p

)(
k
z p

( )cc

k
z p

F IGURE 1 The implicit function zk (p) is the approximation of the parametric solution to the initial value
problem: ¤x(p, t ) = f(x(p, t ), p, t ) at the discrete time points tk illustrated by the curve segments on the center
surface. For s-step methods, each zk (p) approximates the actual solution x(p, tk ) with O(∆t s+1) error, for each k .
The center surface is plotted using the standard approach by connecting each zk (p) using affine interpolation
between adjacent time nodes (black dots) for each p ∈ P . Convex and concave relaxations of zk on P are illustrated
as zcv

k
and zcc

k
, respectively. Similarly, these surfaces are plotted using affine interpolation of each discrete-time

relaxation of zk on P between adjacent time nodes.

In order to relax solutions of an IVP with high accuracy, multiple different relaxation approaches must be used
concurrently. This is because relaxations of the state variables zk at the k th timestep depend on the relaxations of
the state variables at the previous s timesteps for an s-step (or s-order for the methods considered herein) parametric
implicit linear multistep (PILMS) method. This is implemented as follows. The state relaxations of z1 are determined
by solving the (nonlinear) algebraic equations formed by an implicit Euler integration step in which the relaxations of
the z0 states take the values of the initial condition x0 (if the initial conditions do not depend on the parameters p),
or they are set equal to the respective relaxations of x0 (p) on P (known explicitly in a closed form). For the z2 state
relaxations, a second-order implicit method is used with the relaxations of z0 given by initial conditions and the z1
relaxations determined in the prior step. This continues through to zs after which the defined s-step PILMS method
can be used directly. Any subsequent timestep k > s then makes use of the relaxations of the prior s states. The
analog with real vector-valued PILMS integration schemes is that the s-step implicit integration approach requires
the solution of an nx -dimensional system of algebraic equations at each timestep. However, for timesteps k > s , we
utilize the values calculated for the previous s states. Thus, the higher-order implicit integration schemes preserve
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the "sequential block-solve" property that only a system of nx equations needs to be solved simultaneously at each
timestep, while also improving accuracy by utilizing previously calculated information.

Note that this method relies on the a priori determination of stepsizes which must be the same for all values of
p ∈ P . As such, choosing the largest stepsize (smallest K ) may itself be an NP-hard problem and the development
of an adaptive stepsize selection routine for all values of p ∈ P is left for future research. This contrasts the differ-
ential inequalities approach in which state-of-the-art integration schemes can be used that determine stepsizes in an
adaptive fashion as a non-parametric ODE-IVP system bounds the solution set for each box P l ⊂ P .

Numerical Integration of Parametric ODE-IVPs

After obtaining ẑk for k = 1, . . . , s − 1, an s-step PILMS method can be defined generally by the following formula:

ẑk+s +
s−1∑
i=0

ai ẑk+i = ∆t
s∑
j=0

b j f(ẑk+j , p, tk+j ) . (7)

where the index k + s is the current timestep we’re calculating the states with respect to. For a fixed value of p, this
discretization reduces to its non-parametric version. We will consider two generally applicable PILMS methods: the
parametric Adams-Moulton (AM) methods and the backward-difference formula (BDF) methods. For Adams-Moulton
methods, as−1 = −1, and as−2 = · · · = a0 = 0 and the b j coefficients are chosen such that the s-step method has order
s . In contrast, the BDF methods32 set b j = 0 for every j and determine the remaining coefficients to achieve an order
of s . We can then write the s-step parametric Adams-Moulton method as the following residual:

ζsk (ẑk+s , . . . , ẑk , p) = ẑk+s − ẑk+s−1 − ∆t
s∑
j=0

b j f(ẑk+j , p, tk+j ) = 0 (8)

and we can write the s-step parametric BDF method as the following residual:

ξsk (ẑk+s , . . . , ẑk , p) = ẑk+s +
s−1∑
i=0

ai ẑk+i − ∆t bs f(ẑk+s , p, tk+s ) = 0 (9)

where ζs
k
, ξs
k
: D × · · · × D × P → D . Note that in the above equations (8) and (9), the values ẑk+i are known for

i = 0, . . . , s − 1. Therefore, (8) and (9) form a system of nx algebraic equations with nx unknowns. In order to solve
each of these algebraic systems, the Jacobian matrices of (8) and (9) with respect to the ẑk+s variables are required.
The respective Jacobian matrix of either formulation is given below by:

Jsk (ẑk+s , p) = Inx − ∆t bs Jx (ẑk+s , p) (10)

where Inx ∈ Ònx×nx is the identity matrix, Jx is the Jacobian of the right-hand side system f with respect to the state
vector, and the bs values are determined by the method of choice. Note that in either case, this Jacobian depends
only on the state variables of the current block ẑk+s and the parameter values p.

The following theorem details conditions under which a unique implicit function exists satisfying Assumption 2.

Theorem 1 Suppose the system has been discretized using an s-step parametric BDF or AM method. Let b := min(s, k )
and θb

k−b (ẑk , ẑk−1, . . . , ẑk−b , p) = 0 for 1 ≤ k ≤ K with θ ∈ {ζ, ξ}. Let Jv
k
(X , P ) ∈ ÉÒnx×nx be nonsingular (i.e., con-
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tains no singular matrices) with X ∈ ÉD for 1 ≤ v ≤ s computed from (10). Suppose for k = 1, . . . ,K there exists
(ẑ∗
k
, ẑ∗
k−1, . . . , ẑ

∗
k−b , p

∗) ∈ X b+1 × P such that θb
k−b (ẑ

∗
k
, ẑ∗
k−1, . . . , ẑ

∗
k−b , p

∗) = 0. Further, suppose that for every ẑk ∈ X
such that ẑk < int(X ) , we have θbk−b (ẑk , ẑk−1 . . . , ẑk−b , p) , 0 for every (ẑk−1 . . . , ẑk−b , p) ∈ X b × P . Then Assumption 2
holds with hk (zk (p), p) = θbk−b (zk (p), zk−1 (p), . . . , zk−b (p), p) = 0 for 1 ≤ k ≤ K .

Proof This result follows directly from the semilocal implicit function theorem (Thm. 5.1.3 of Neumaier 27) applied
sequentially to each block of equations k ∈ {1, . . . ,K }. We proceed by strong induction. For k = 1, note that z0 is
a function of p, namely z0 = x0 (p) , therefore θ10 (ẑ1, ẑ0, p) = θ

1
0 (ẑ1, x0 (p), p) . Continuous differentiability of ξ10 with

respect to ẑ1 ∈ X is ensured directly by the continuous differentiability of f over D × Π × T and Corollary 5.1.5 of
Neumaier 27 is satisfied. By assumption, there exists (ẑ∗1, ẑ

∗
0, p
∗) ∈ X 2 × P such that θ10 (ẑ

∗
1, ẑ
∗
0, p
∗) = 0 which may be

restated as θ10 (ẑ
∗
1, x0 (p

∗), p∗) = 0. Further, for every ẑ1 ∈ X such that ẑ1 < int(X ) , we have θ10 (ẑ1, x0 (p), p) , 0 for all
p ∈ P since x0 (P ) ⊂ D . As such, Theorem 5.1.3 of Neumaier 27 is satisfied with J11 (X , P ) ensuring a unique implicit
function z1 (p) ∈ X ∈ ÉD exists for every p ∈ P satisfying h1 (z1 (p), p) = θ10 (z1 (p), x0 (p), p) = 0.

Now suppose that for 1 < k ≤ K , there exist unique implicit functions z1 (p), z2 (p), . . . , zk−1 (p) ∈ X ∈ ÉD

for every p ∈ P . Then, we have θb
k−b (ẑk , ẑk−1, . . . , ẑk−b , p) = θ

b
k−b (ẑk , zk−1 (p), . . . , zk−b (p), p) . Continuous differen-

tiability of θb
k−b with respect to ẑk ∈ X is ensured directly by the continuous differentiability of f over D × Π × T

and Corollary 5.1.5 of Neumaier 27 is satisfied. By assumption, there exists (ẑ∗
k
, . . . , ẑ∗

k−b , p
∗) ∈ X b+1 × P such that

θb
k−b (ẑ

∗
k
, ẑ∗
k−1, . . . , ẑ

∗
k−b , p

∗) = 0. As a result, there exists p∗ ∈ P such that θb
k−b (ẑ

∗
k
, zk−1 (p∗), . . . , zk−b (p∗), p∗) = 0.

Additionally, for each ẑk ∈ X such that ẑk < int(X ) , we have θb
k−b (ẑk , zk−1 (p) . . . , zk−b (p), p) , 0 for every p ∈ P

and as such Theorem 5.1.3 of Neumaier 27 is satisfied with Js
k
(X , P ) ensuring existence of a unique implicit function

zk (p) ∈ X ∈ ÉD for every p ∈ P . This implicit function satisfies hk (zk (p), p) = θbk−b (zk (p), zk−1 (p) . . . , zk−b (p), p) = 0.
This completes the proof by strong induction. As a consequence, there exists a unique implicit function zk : P → D

for k = 0, 1, . . . ,K such that h(z(p), p) = 0 holds for all p ∈ P with z = (x0, z1, z2, . . . , zK ) .

In addition to the theorem outlined above, parametric interval iterations (e.g., interval Newton27, Krawcyzk33,
Hansen-Sengupta27, etc.) have associated existence and uniqueness conditions which may be computationally ver-
ified at each iteration. As such, these methods can serve as a useful preprocessing step which may contract the X
interval and furnish a guarantee of existence and uniqueness of an enclosed implicit function solution branch for every
p ∈ P . Further a condition for nonsingularity satisfying Theorem 1 is given by Theorem 2 below.

Theorem 2 Let Zk+s ∈ ÉX and let Jc ∈ Ònx×nx be nonsingular defined as Jc ≡ mid(J s
k
(Zk+s , P )) (i.e., the elementwise

midpoint of the interval matrix), and ∆∗ ≡ (J s
k
(Zk+s , P ))U − Jc (i.e., the elementwise radius of J sk ). Further, let A ≡ |J

−1
c |∆∗,

where |J−1c | is the elementwise absolute value of J−1c , and let λmax = maxi { |λi | } be the magnitude of the extremal eigen-
value(s) of A. If λmax < 1, then J sk (Zk+s , P ) contains no singular matrices.

Proof This directly follows from Proposition 4.1.1 in Neumaier 27. Note that bs is a positive constant which depends
on the method of choice and ∆t > 0 by definition.

Remark Theorem 2 provides a computational test for aiding users in choosing appropriate discretizations to avoid
violating the hypotheses of Theorem 1 and ensuring satisfaction of Assumption 2.

Second-order PILMS methods considered herein (both the trapezoidal method, i.e., two-step Adams-Moulton
method, and the two-step BDF) exhibit A-stability (unconditional stability) while first-order methods exhibit absolute
A-stability (L-stability)34,35. Higher-order PILMS methods often exhibit better stability than explicit methods but they
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do not exhibit A-stability35. However, thesemethods exhibit O(∆t s+1) local truncation error and the superior stability
of lower-order methods must be balanced against the superior numerical accuracy of higher-order methods. When
used to solve ODE-IVPs, lower-order methods are commonly used for timesteps involving the initial condition and
s-order methods are used once s − 1 preceding points haven been calculated. Since the focus of this work is on the
application to stiff systems, numerical stability is emphasized when choosing an appropriate implicit integration form.
Therefore, in this paper we consider only first- and second-order methods which are given by the residual equations:

ζ2k (ẑk+2, ẑk+1, ẑk , p) = ẑk+2 − ẑk+1 − (∆t/2) (f(ẑk+2, p, tk+2) + f(ẑk+1, tk+1)) (11)

ξ1k (ẑk+1, ẑk , p) = ẑk+1 − ẑk − ∆t f(ẑk+1, p, tk+1) (12)

ξ2k (ẑk+2, ẑk+1, ẑk , p) = ẑk+2 − 4
3 ẑk+1 +

1
3 ẑk −

2
3∆t f(ẑk+2, p, tk+2) (13)

where (11) is the second-order/two-step parametric Adams-Moulton method (i.e., trapezoidal method), (12) is the
first-order parametric BDF method (i.e., backward/implicit Euler), and (13) is the second-order/two-step parametric
BDFmethod. With respect to the equality constraints of (5), the equations given by (11)-(13) would form the K blocks
of nx equations of h. This is expressed formally as:

h(ẑ0, ẑ1, . . . , ẑK , p) =

©­­­­­­­«

ξ10 (ẑ1, ẑ0, p)
θ20 (ẑ2, ẑ1, ẑ0, p)

.

.

.

θ2K−2 (ẑK , ẑK−1, ẑK−2, p)

ª®®®®®®®¬
= 0 (14)

where θ ∈ {ξ, ζ }. The reader is reminded that if the parameters p are specified, the number of unknown variables is
nxK since ẑ0 is fully-determined by the initial conditions. From a numerical algebraic equation-solving perspective, one
would not solve h = 0 (i.e., the full nxK -dimensional system) simultaneously, but instead in a sequential block-solve
fashion where the nx -dimensional system formed by the equations h1 through hnx are solved simultaneously followed
by equations hnx+1 through h2nx , continuing sequentially all theway to theK th systemof equations hnx (K−1)+1 through
hnxK .

The computational performance benefit of the sequential block-solve approach is clear as the full-scale (dense)
Newton-Raphson with Gauss-Seidel algorithm exhibits O(K 2n2x κGSκNR) time complexity with κGS representing the
number of Gauss-Seidel iterations and κNR the number of Newton-Raphson iterations required for convergence. In
theworst-case, κGS = Knx , and so a dense solve would have O(K 3n3x κNR) time complexity. In contrast, a conventional
banded solver would exhibit O(Kn2x κGSκNR) = O(K 2n3x κNR) time complexity (for strongly-coupled right-hand side
functions). The sequential-block approach outlined here exhibits O(Kn2x κGSκNR) time complexity, except κGS = nx
in the worst-case. Thus, the sequential-block approach exhibits O(Kn3x κNR) worst-case time complexity. Example
sparsity patterns of the occurrence matrices corresponding to the systems formed for each method with nx = 5 are
shown in Figure 2. The corresponding directed graph for the considered two-step methods is shown in Figure 3.

Relaxations of Parametric Implicit Linear Multistep Methods

In this section, we present the notation and results for constructing relaxations of implicit functions via a sequential-
block procedure ideal for implicit integration schemes (11)-(13), which will also be extensible to general s-step PILMS
methods as in (7). The first construction of relaxations and subgradients of implicit functions via an implicit integra-
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F IGURE 2 The sparsity patterns of the occurrence matrices of the systems of equations are illustrated for each
of the three implicit integration schemes with nx = 5. The sparsity patterns exhibit the block-diagonal structure
corresponding to the timestep k which is exploited by the numerical equation solver and relaxation algorithms.
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F IGURE 3 The directed graph corresponding to the occurrence matrices in Fig. 2 for the considered 2-step
PILMS methods (with nx = 5, θ ∈ {ξ, ζ }) is depicted illustrating the sequential-block structure exploited when
solving numerically the discretized system and constructing bounds and relaxations of the implicit functions zk on P .

tion form was demonstrated in Stuber et al.24. However, in that work, only the implicit (backward) Euler scheme
(12) was presented, and higher-order methods such as (11) and (13) were not considered. Further, although that
work constructed relaxations in a sequential-block procedure, the notation was not generalized beyond the newly-
developed notation for the standard relaxations of implicit functions. We begin with the following assumption, which
is analogous to Assumption 3.14 in Stuber et al.24 for ensuring that relaxations of implicit functions are computable.

Assumption 3 We assume that the following holds:
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1. There exists a function z : P → DK+1 with h(z(p), p) = 0, and an interval X ∈ ÉD such that z(P ) ⊂ X K+1 and z(p) is
unique in X K+1 for all p ∈ P .

2. Derivative information +hi , i = 1, . . . , nxK is available and is factorable, say by automatic differentiation.
3. A matrix Yk ∈ Ònx×nx is known such that Mk = YJ s

k
(X , P ) satisfies 0 < Mk ,i i for all i ∈ {1, . . . , nx } and for all k ,

where J s
k
(X , P ) is an inclusion monotonic interval extension of Js

k
(given by (10)) on X × P .

Note that for consistency with (5), Assumption 2, and (14), we have defined z to have nx (K + 1) dimensionality
to account for the initial condition z0 (p) = x0 (p) . Theorems 1 and 2 together provide a method for determining an
appropriate X ∈ ÉD satisfying Assumption 3.1. Parametric interval methods may be used to automatically compute
and verify an appropriate X interval satisfying Assumption 3.1 utilizing Theorems 1 and 2. In general, domain specific
knowledge is required to furnish a valid initial guess for the interval X such that Assumption 3.1 holds. The difficulty
of this will vary between applications. In some cases, for example, it may be sufficient to recognize that mass fractions
must be nonnegative and less than one. In other cases, more specialized knowledge of the system may be required.

To develop the relaxations of the parametric state trajectories, we rely on the construction of relaxations of para-
metric solutions of nonlinear algebraic systems formed by the PILMSmethods. Therefore, the core theory relies on the
construction of composite relaxations of fixed-point iterations in a special way such that the computed relaxations are
not only valid for the numerical approximations of parametric solutions of nonlinear algebraic systems, but are valid
for the true solutions themselves. In this work, we will utilize an analog to the Newton-Raphson fixed-point iteration
with Gauss-Seidel for constructing valid relaxations of implicit function solutions of stiff ODE-IVPs approximated us-
ing two-step PILMS methods. This approach is very closely related to the Hansen-Sengupta interval method 27 for
constructing interval bounds of solutions of nonlinear algebraic systems. The development of this approach starts
with the parametric mean value theorem24.

The parametric mean value theorem applied to the j th dimension of the full system of equations results in the
following equation:

+xhj (yj (p), p)T (zk (p) − γ (p)) = −hj (γ (p), p), j = (k − 1)nx + 1, . . . , k nx (15)

where γ : P → D and yj : P → D satisfies yj (p) = λ (p)zk (p)+ (1−λ (p))γ (p) for all p ∈ P for some λ : P → (0, 1) . In a
somewhat similar way, the construction of relaxations of implicit functions as solutions of nonlinear algebraic systems
is computed as composite relaxations of the system of equations formed by the application of the parametric mean
value theorem to hk . To form this system of equations, we must first define Mk (and Bk ) matrix-valued functions.
The Mk (and Bk ) matrix-valued functions exist by differentiability of hk and the parametric mean value theorem for
parametric multivariate vector-valued functions (see Lemma 3.15 of Stuber et al. 24).

Definition 7 (Mk ,Bk ) The matrix-valued functionsMk : P → Mk and Bk : X × · · · × X × P → Mk , with k ∈ {1, . . . ,K }
corresponding to each timestep, are defined as

Mk ( · ) = Bk (y(k−1)nx+1 ( · ), y(k−1)nx+2 ( · ), . . . , yk nx ( · ), · ) ≡ Yk

©­­­­­­­«

+xh (k−1)nx+1 (y(k−1)nx+1 ( · ), · )T

+xh (k−1)nx+2 (y(k−1)nx+2 ( · ), · )T
.
.
.

+xhk nx (yk nx ( · ), · )T

ª®®®®®®®¬
. (16)

Using the timestep/block indexing, the vector-valued functions are defined as h1 (ẑ, p) = (h1, h2, . . . , hnx ) = ξ10 (ẑ1, z0 (p), p)
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and hk (ẑk , p) = (h (k−1)nx+1, h (k−1)nx+2, . . . , hk nx ) = θ2
k−2 (ẑk , zk−1 (p), zk−2 (p), p) for k ≥ 2 with θ ∈ {ζ, ξ}. The

parametric functions yj : P → X satisfy the parametric mean value theorem (Cor. 2.5 in Stuber et al. 24) when applied to
hj : X × P → X , as illustrated in (15) , with j = (k − 1)nx + 1, . . . , k nx for each timestep k ∈ {1, . . . ,K }. In other words,
(yj (p), p) ∈ X × P are the points at which the gradients +xhj ( · , · ) are evaluated at. Further, the matrix Yk ∈ Ònx×nx is
chosen such that it satisfies Assumption 3.3.

Remark Note that the definition of Mk (and Bk ) satisfies Lemma 3.15 of Stuber et al. 24. We include it here for
completeness and for easy reference in the following theorem. We note that Mk cannot be very easily calculated
since the yj functions are not known. Fortunately, we do not need to calculate Mk , but we must able to calculate
relaxations ofMk , which is in fact much easier than calculatingMk itself.

These matrix-valued functions resemble the Jacobian matrix since they are matrices of partial derivatives of hk
with respect to the state variables x, for the current timestep approximated as ẑk . However, it is worth highlighting that
these are not actually the Jacobian matrix since each transposed gradient (matrix row) is not evaluated at necessarily
the same point, but at the point yj from the k th block of equations according to the parametric mean value theorem.

From (15) and Definition 7, we can now form the nx -dimensional system of equations for the k th block as:

Mk (p) (zk (p) − γ (p)) = −Yk hk (γ (p), p) = −Yk θ2k−2 (γ (p), zk−1 (p), zk−2 (p), p), [p ∈ P . (17)

From this mean value form, we can now define the function ψk as an analog to the Newton-Raphson fixed-point
iteration with Gauss-Seidel for approximating zk (i.e., the solution of the nonlinear system). The form of this iteration
is defined for the k th timestep of two-step PILMS methods in the following.

Definition 8 (ψk ) Let bk : X × X × X × P → Ònx such that bk = Yk θsk−2 with θ ∈ {ξ, ζ }, s ∈ {1, 2}, and 2 ≤ k ≤ K .
Let Yk and Mk be defined as in Assumption 3.3. Define the function ψk : X × Mk × X × X × X × P → Ònx such that
[(γ̃, M̃, z̃k , z̃k−1, z̃k−2, p) ∈ X ×M × X × X × X × P , ψk (γ̃, M̃, z̃k , z̃k−1, z̃k−2, p) = z̃∗

k
, where the i th component of z̃∗

k
is

given by the loop:

for i = 1, . . . , nx do

z̃ ∗k ,i := γ̃i −
bk ,i (γ̃, zk−1 (p), zk−2 (p), p) +

∑
j<i m̃i j (z̃ ∗k ,j − γ̃j ) +

∑
j>i m̃i j (z̃k ,j − γ̃j )

m̃i i
(18)

end.

Remark Note that this definition is analogous to Definition 3.17 in Stuber et al.24 with the modification that the b
function is indexed by the timestep k and is dependent on the implicit functions of the two previous timesteps (k − 1
and k − 2) to account for the dependence on the two prior timesteps in two-step PILMS methods. For the first block
of equations where we utilize the implicit Euler form: h1 = ξ10 , we will still utilize this definition of ψ1 with b1 as
b1 (γ̃, z0 (p), z0 (p), p) = Y1ξ10 (γ̃, z0 (p), p) .

If we were somehow capable of easily calculatingMk (and thus Bk ) for each k , and select M̃ =Mk , then Definition
8 would define a semi-explicit representation of the implicit function solution zk ( · ) through its mean value form. This
is important as we use this property to calculate valid convex and concave relaxations of zk ( · ) via relaxations of its
mean value form componentwise as composite relaxations of ψk . Stuber et al. 24 demonstrated exactly why relaxing
the Newton-Raphson fixed-point iteration doesn’t work as intended for general systems when approached in a naive
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way. That is, even though convex/concave relaxations are calculable by simply applying the rules for constructing
McCormick relaxations and composite relaxations, theywill not convergewhen usedwithin a B&B algorithm for global
optimization. Rules for circumventing this were developed for general nonlinear systems 24, which rely on relaxing zk
through the mean value form approximated using ψk . We follow this approach in this work.

With these definitions of ψk , Mk , and Bk , we can state the following theorem which provides the result that
convex and concave relaxations of the implicit functions zk : P → X for k = 1, . . .K , and their subgradient information,
can be calculated in a practical way. This result follows directly from Thm. 3.25 of Stuber et al. 24 with the notational
and functional modifications made here specifically for the implicit integration forms and a corresponding sequential-
block relaxation construction procedure accounted for in the definition of ψk (Def. 8) andMk (Def. 7).

Theorem 3 Let h1 (ẑ1, p) = ξ10 (ẑ1, z0 (p), p) and let hk (ẑk , p) = θ
2
k−2 (ẑk , zk−1 (p), zk−2 (p), p) with k ≥ 2 and θ ∈ {ζ, ξ}.

Let zcv
i
, zcc
i

: P → X be known convex and concave relaxations of zi on P , respectively, for i = 0 and i ∈ {k − 1, k − 2}
for k ≥ 2 and let scvzi , s

cc
zi : P → Ònp×nx be known subgradients of those relaxations on P . Let λ ∈ [0, 1] and p̄ ∈

P . Let uBk , oBk be composite relaxations of Bk on X × X × · · · × X × P and SuBk , SoBk be composite subgradients
of uBk , oBk , respectively. Let ūψk , ōψk be composite relaxations of ψk on X × M × X × X × X × P and Sūψk , Sōψk
composite subgradients of ūψk , ōψk , respectively. Then, for any r ∈ Î+ (r ≥ 1) the elements of the sequences {z

j ,cv
k
}r
j=0 and

{zj ,cc
k
}r
j=0 calculated within Algorithm 2 are convex and concave relaxations of zk on P , respectively. Further, the elements

of the sequences {sj ,cvzk }
r
j=0 and {s

j ,cc
zk }

r
j=0 calculated in Algorithm 2 are subgradients of the elements of the sequences

{zj ,cv
k
}r
j=0 and {z

j ,cc
k
}r
j=0, respectively. Furthermore, Algorithm 3 returns zcv and zcc , convex and concave relaxations of z

on P , respectively, along with their respective subgradients scvz and sccz .

Proof The proofwill proceed as follows. First, wewill show that relaxations ofMk are computable. Then, wewill show
that these relaxations can be used to calculate relaxations ofψk , for which the implicit function zk is a fixed-point for
every p ∈ P .

Consider an arbitrary timestep 2 ≤ k ≤ K and the corresponding block of equations

hk (ẑk , p) = θ2k−2 (ẑk , zk−1 (p), zk−2 (p), p) = 0.

Since Algorithm 2 is defined consistently with Stuber et al.24, we will show how relaxations of ψk as defined in
Definition 8 (and their subgradients) are computable.

By the parametric mean value theorem24, we have

Mk (p) (zk (p) − γ (p)) = −Yk hk (γ (p), p) = −Yk θ2k−2 (γ (p), zk−1 (p), zk−2 (p), p), [p ∈ P .

By definition of yi , i = (k − 1)nx + 1, . . . , k nx , by the parametric mean value theorem (in the definition ofMk (p)),
any convex and concave relaxations of zk on P which are also valid for γ , are valid for yi for i = (k − 1)nx +1, . . . , k nx
(see Lemma 3.16 Stuber et al. 24 for further reading). By construction (Line 6, Alg. 2) γ j satisfies this condition for zj ,a

k

and zj ,A
k

. Therefore, for each j , the affine functions zj ,a
k
, zj ,A
k

are respectively valid convex and concave relaxations of
yi (from Def. 7) on P for every i = (k − 1)nx + 1, . . . , k nx .

As a result, relaxations ofMk on P are calculable as:

Mj ,cv
k
(p) :=uBk (z

j ,a
k
(p), zj ,A

k
(p), . . . , zj ,a

k
(p), zj ,A

k
(p), p)

Mj ,cc
k
(p) :=oBk (z

j ,a
k
(p), zj ,A

k
(p), . . . , zj ,a

k
(p), zj ,A

k
(p), p) .
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Thus, by definition, Mj ,cv
k
,Mj ,cc

k
are convex and concave relaxations of Mk on P , respectively, for every j . The corre-

sponding subgradient calculations follow analogously. Now, we will show that zk is a fixed-point of ψk .

By Assumption 3.2, we have 0 < Mk ,i i ⊃ mk ,i i (P ), [i . Then, for i = 1, . . . , nx , we can write:

zk ,i (p) = γi (p) −
bk ,i (γ (p), zk−1 (p), zk−2 (p), p) +

∑
j<i mk ,i j (p) (zk ,j (p) − γj (p)) +

∑
j>i mk ,i j (p) (zk ,j (p) − γj (p))

mk ,i i (p)
.

By Definition 8, we can write:

ψk ,1 (γ (p),Mk (p), zk (p), zk−1 (p), zk−2 (p), p) = z ∗k ,1 (p)

= γ1 (p) −
bk ,1 (γ (p), zk−1 (p), zk−2 (p), p) +

∑
j>i mk ,1j (p) (zk ,j (p) − γj (p))

mk ,11 (p)

= zk ,1 (p) .

By induction, it follows that zk ,i (p) = ψi (γ (p),Mk (p), zk (p), zk−1 (p), zk−2 (p), p) = z ∗
k ,i

for every i . Thus, zk is a
fixed-point of ψk for every p ∈ P .

By hypothesis, we have valid convex and concave relaxations zcv
k−1 (p), z

cv
k−2 (p) and z

cc
k−1 (p), z

cc
k−2 (p) of zk−1 (p), zk−2 (p)

on P , respectively, for k ≥ 2 and their corresponding subgradients. Further, by design γ : P → X is affine (both convex
and concave). As a result, relaxations of the function bk = Yk θk−2 (as defined in Definition 8) on P are calculable as

ubk (γ (p),γ (p), z
cv
k−1 (p), z

cc
k−1 (p), z

cv
k−2 (p), z

cc
k−2 (p), p) (19)

obk (γ (p),γ (p), z
cv
k−1 (p), z

cc
k−1 (p), z

cv
k−2 (p), z

cc
k−2 (p), p) (20)

and similarly, their subgradients are calculable.

We must also consider the k = 1 case. Then, we have the corresponding block of equations:

h1 (ẑ1, p) = ξ10 (ẑ1, z0 (p), p) = 0.

By hypothesis, we have zcv0 , z
cc
0 and scvz0 , s

cc
z0 . Then, the previous results still hold with z

cv
k−1, z

cv
k−2 := zcv0 , zcc

k−1, z
cc
k−2 := zcc0 ,

scvzk−1 , s
cv
zk−2 := scvz0 , and s

cc
zk−1 , s

cc
zk−2 := sccz0 in (19) and (20). It follows immediately that if we know zj ,cv

k
and zj ,cc

k
, then

zj+1,cv
k

( · ) :=ūψk (γ ( · ),γ ( · ),M
j ,cv
k
( · ),Mj ,cc

k
( · ), zj ,cv

k
( · ), zj ,cc

k
( · ), zcvk−1 ( · ), z

cc
k−1 ( · ), z

cv
k−2 ( · ), z

cc
k−2 ( · ), · )

zj+1,cc
k

( · ) :=ōψk (γ ( · ),γ ( · ),M
j ,cv
k
( · ),Mj ,cc

k
( · ), zj ,cv

k
( · ), zj ,cc

k
( · ), zcvk−1 ( · ), z

cc
k−1 ( · ), z

cv
k−2 ( · ), z

cc
k−2 ( · ), · ) .

are convex and concave relaxations of zk on P , respectively. The analogous result holds for their subgradients. Since
Algorithm 2 provides zj ,cv

k
, zj ,cc
k

for j = 0, by induction, we conclude that this result (and the analogous subgradient
result) holds for every j = 1, . . . , r . Thus, the elements of {zj ,cv

k
}r
j=0 and {z

j ,cc
k
}r
j=0 as calculated within Algorithm 2

are valid convex and concave relaxations of zk on P , respectively, and sj ,cvzk and sj ,cczk are their respective subgradients
for j = 0, . . . , r . Since we showed that relaxations and their subgradients are calculable by Algorithm 2 for each
timestep k = 1, . . . ,K , we conclude that Algorithm 3 returns zcv and zcc , valid convex and concave relaxations of z on
P , respectively, along with their respective subgradients scvz and sccz .
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Algorithm 1 Affine Reference Function for Relaxations of Implicit Functions
1: procedure Aff(c,C, sc, sC, λ,X , P , p̄)
2: for i ← 1 to nx do
3: X a

i
← ci +

∑np
j=1
(scT)i j (Pj − p̄ j ) . Interval arithmetic calculation

4: X A
i
← Ci +

∑np
j=1
(sCT)i j (Pj − p̄ j ) . Interval arithmetic calculation

5: Ωi ← λX a
i
+ (1 − λ)X A

i
. Interval arithmetic calculation

6: if ωL
i
< xL

i
then

7: (sc)i j ← 0, [j = 1, . . . , np

8: ci ← xL
i

9: end if
10: if ωU

i
> xU

i
then

11: (sC)i j ← 0, [j = 1, . . . , np

12: Ci ← xU
i

13: end if
14: end for
15: return c,C, sc, sC
16: end procedure

Algorithm 2 Relaxation of a Single Block of a 2-Step PILMS Method
1: procedure BlockRelax(hk , X ,p, p̄, P , zcv

k−1, z
cc
k−1,s

cv
zk−1 ,s

cc
zk−1 ,z

cv
k−2, z

cc
k−2,s

cv
zk−2 ,s

cc
zk−2 ,r ,λ)

2: z0,cv
k
, z0,cc
k
, s0,cvzk , s

0,cc
zk ← xL , xU , 0, 0

3: for j ← 0 to r − 1 do
4: c,C, sc, sC ← Aff(zj ,cv

k
(p̄), zj ,cc

k
(p̄), sj ,cvzk (p̄), s

j ,cc
zk (p̄), λ,X , P , p̄)

5: zj ,a
k
(p) ← c + scT (p − p̄) . Affine relaxation lower bound

6: zj ,A
k
(p) ← C + sCT (p − p̄) . Affine relaxation upper bound

7: γ j (p) ← λzj ,a
k
(p) + (1 − λ)zj ,A

k
(p)

8: sjγ ← λsc + (1 − λ)sC
9: Mj ,cv (p) ← uBk (z

j ,a
k
(p), zj ,A

k
(p), . . . , zj ,a

k
(p), zj ,A

k
(p), p)

10: Mj ,cc (p) ← oBk (z
j ,a
k
(p), zj ,A

k
(p), . . . , zj ,a

k
(p), zj ,A

k
(p), p)

11: sj ,cvM (p) ← SuB (z
j ,a
k
(p), zj ,A

k
(p), sc, sC, . . . , z

j ,a
k
(p), zj ,A

k
(p), sc, sC, p)

12: sj ,ccM (p) ← SoB (z
j ,a
k
(p), zj ,A

k
(p), sc, sC, . . . , z

j ,a
k
(p), zj ,A

k
(p), sc, sC, p)

13: zj+1,cv
k

(p) ← ūψ (γ j (p),γ j (p),Mj ,cv (p),Mj ,cc (p), zj ,cv
k
(p), zj ,cc

k
(p), zcv

k−1 (p), z
cc
k−1 (p), z

cv
k−2 (p), z

cc
k−2 (p), p)

14: zj+1,cc
k

(p) ← ōψ (γ j (p),γ j (p),Mj ,cv (p),Mj ,cc (p), zj ,cv
k
(p), zj ,cc

k
(p), zcv

k−1 (p), z
cc
k−1 (p), z

cv
k−2 (p), z

cc
k−2 (p), p)

15: sj+1,cvzk (p) ← Sūψ (γ j (p),γ j (p), s
j
γ , s

j
γ ,Mj ,cv (p),Mj ,cc (p), sj ,cvM (p), sj ,ccM (p), zj ,cv

k
(p), zj ,cc

k
(p), sj ,cvzk (p), s

j ,cc
zk (p), p)

16: sj+1,cczk (p) ← Sōψ (γ j (p),γ j (p), s
j
γ , s

j
γ ,Mj ,cv (p),Mj ,cc (p), sj ,cvM (p), sj ,ccM (p), zj ,cv

k
(p), zj ,cc

k
(p), sj ,cvzk (p), s

j ,cc
zk (p), p)

17: end for
18: return zr ,cv

k
(p), zr ,cc

k
(p), sr ,cvzk (p), s

r ,cc
zk (p)

19: end procedure
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Algorithm 3 Relaxations of Parametric IVPs using 2-Step PILMS Methods
1: procedure IVPBound(X , p, p̄, P ,h, x0, r , λ)
2: zcv0 , z

cc
0 , s

cv
z0 , s

cv
z0 ←McCormickRelax(X , P , x0 (p)) . Standard McCormick relaxation of x0 on P

3: zcv1 (p), z
cc
1 (p), s

cv
z1 (p), s

cc
z1 (p) ←BlockRelax(h1,X , p, p̄, P , zcv0 , z

cc
0 , s

cv
z0 , s

cc
z0 , x

L , xU , 0, 0, r , λ)
4: for k ← 2 to K do
5: zcv

k
(p), zcc

k
(p), scvzk (p), s

cc
zk (p) ←BlockRelax(hk ,X , p, p̄, P , zcvk−1, z

cc
k−1, s

cv
zk−1 , s

cc
zk−1 , z

cv
k−2, z

cc
k−2, s

cv
zk−2 , s

cc
zk−2 , r , λ)

6: end for
7: zcv (p), scvz (p) ← (zcv0 (p), z

cv
1 (p), . . . , z

cv
K
(p)), (scvz0 (p), s

cv
z1 (p), . . . , s

cv
zK (p))

8: zcc (p), sccz (p) ← (zcc0 (p), z
cc
1 (p), . . . , z

cc
K
(p)), (sccz0 (p), s

cc
z1 (p), . . . , s

cc
zK (p))

9: return zcv (p), zcc (p), scvz (p), sccz (p)
10: end procedure

Partition Convergence

In this section, we show that Algorithm 3 generates a relaxation which exhibits partition convergence given that
Assumption 3 is entirely satisfied. This result follows directly from established properties of the implicit relaxation
algorithm presented in Stuber et al. 24 and ensures that a B&B algorithmwhen used in conjunctionwith the relaxations
developed herein will terminate in finite time.

Proposition 4 Consider a nested sequence of intervals {Pq }, Pq ⊂ P , q ∈ Î, such that {Pq } → [p̄, p̄] for some p̄ ∈ P . Let
zcvq , zccq be relaxations of z on Pq obtained using Algorithm 3 and denote the state variable convex and concave relaxations
at the k th timestep as zcv

k ,q
, zcc
k ,q

, respectively. Let φcvq ( ·) = uφ (zcvq ( · ), zccq ( · ), · ) be a convex relaxation of the objective
function φ on P q . Let φ̂cvq = minp∈Pq φcvq (p) . Then limq→∞ φcvq = φ (z(p̄), p̄) .

Proof Consider K = 1, then h = h1 (ẑ1, p) = ξ10 (ẑ1, ẑ0, p) trivially reduces to the form considered explicitly in the
lower-bounding problem formulation (16) in Stuber et al.24 and Lemma 4.3 in Stuber et al.24 with respect to the
state variables ẑ1 as ẑ0 = x0 (p) . Now we proceed for general K > 1 with a proof by contradiction. Suppose that for
K > 1 we have limq→∞ φcvq , φ (z(p̄), p̄) . As ucvφ is constructed by generalized McCormick relaxations, it is continu-
ous and exhibits partition convergence29. This implies that there must exist a k such that limq→∞ zcv

k ,q
, zk ,q (p̄) or

limq→∞ zcc
k ,q
, zk ,q (p̄) . However, this implies that either limq→∞ zcv

k−1,q , zk−1,q (p̄) or limq→∞ zcc
k−1,q , zk−1,q (p̄) as

continuity of zq ,k and componentwise partition convergence of valid relaxations zcv
k−1,q and z

cc
k−1,q result in componen-

twise partition convergence of zcv
k ,q

and zcc
k ,q

. Continuing this reasoning by reverse induction, we see that this would
imply that for k = 1 the partition convergence is not observed, which is a direct contradiction of the K = 1 case.

Theorem 5 Let X be defined as in Def. 4.1 of Stuber et al.24 and suppose Assumption 4.2 of Stuber et al.24 holds. Further,
suppose the hypotheses of Proposition 4 hold. Then, after finitely many iterations, κ , the spatial B&B algorithm of Stuber et
al.24 with relaxations calculated by Algorithm 3 terminates either with an ε-optimal global solution such that ακ − βκ ≤ ε,
or a certificate of infeasibility.

Proof Lemma 4.4 through 4.8 in Stuber et al.24 hold from the pointwise convergence property of Proposition 4 and
continuity assumptions without further modification. As a result, the finite convergence theorem (Thm. 4.9) in Stuber
et al.24 holds.
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Implementation

All numerical experiments in this work were run on a single thread of an Intel Xeon E3-1270 v5 3.60/4.00GHz
(base/turbo) processor with 16GB ECC RAM allocated to an Ubuntu 18.04LTS operating system virtual machine and
Julia v1.136. Absolute and relative convergence tolerances for the B& B algorithm of 10−2 and 10−5, respectively were
specified for all example problems. A solver extension to the EAGO.jl package37 was created to implement the algo-
rithm detailed above and is located at https://github.com/PSORLab/EAGODifferential.jl. The Intel MKL (2019
Update 2)38 was used to perform all LAPACK39,40 and BLAS41 routines.

An affine lower-bounding problem was constructed using the relaxations evaluated at their midpoint and their
respective subgradients22. Two iterations of the PILMS method developed here were used to compute the lower
bound, (i.e., r = 2). The lower-bounding problems were solved using CPLEX 12.8.042. In addition to the relaxations
of the objective function, linear objective cuts were used to restrict the feasibility region based on the global upper
bound. Additionally, duality-based bounds tightening (DBBT) was performed43, using the multipliers obtained when
solving the lower-bounding problem.

Any feasible point provides a valid upper bound for the optimization problem. As no equality constraints are
left in any of the formulations addressed below, we can simply solve the system for the state variables at a specified
point in the subdomain of interest. Any inequality constraints in the upper-bounding problem are then evaluated
at this solution point and the upper-bounding problem is feasible if this point is feasible. We use an adaptation
of this approach to furnish the upper bound. At each node in the B&B tree, the parametric ODE-IVP is numerically
integrated at the midpoint of the respective decision space, p∗ = mid(Pq ) , using the fixed-stepsize integration scheme
corresponding to the discretized system of equations in (5). The DifferentialEquations.jl 44 package is used to perform
each numerical integration step.

Prior to calculating the lower bound, it is often advantageous to contract the initial state space bounds for the
q th node, Xq ,0 by application of a parametric interval method. We perform up to five iterations of parametric interval-
Newton or terminate if the bounds fail to further contract within 5 iterations. These state variable bounds Xq ,κ are
then stored as the state variable bounds of the resulting child nodes provided the problem is feasible. It merits noting
that the PILMS methods developed here are at least as tight as the parametric interval method for bounds tightening.
However, it requires additional calculations to determine the values of the relaxations and their respective subgradi-
ents. As such, a decrease in overall computation time can be realized by applying this contractor then computing the
relaxation of the implicit function.

Il lustrative Examples

Example 1 (A Scalar Parametric ODE-IVP) Consider the simple scalar ODE-IVP presented in Section 4.1 of Sahlodin
and Chachuat 19 with a single parameter:

¤x (p, t ) = −x2 + p, t ∈ I = [0, 1], p ∈ P = [−1, 1] (21)

x0 (p) = 9, p ∈ P .

We make use of the developed theory of relaxations of implicit functions to construct bounds of the solution on P
with initial state bounds as X = [0.1, 9]. A single iteration of the parametric interval-Newton method yields new
state bounds entirely within the interior of the prior bounds. By Theorem 1 above and Theorem 5.1.8 in Neumaier 27,
this verifies the existence of a unique implicit function in X . Both the two-step PILMS methods (11) and (13) were
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used to construct bounds with and without the use of a parametric interval contraction method. In Figure 4, the
relaxations are obtained using only the state bounds specified as X . As illustrated in Figure 4, the bounds obtained
expand as time progresses and increasing the number of discretization points K can lead to weaker bounds due to
the dependency issue common among set-valued arithmetic19. However, these bounds still exhibit the pointwise
convergence property and the use of these methods in conjunction with domain reduction techniques can alleviate
these issues. This is observed by the tight bounds obtained using K = 200 discretization points and contracting the
state variables prior to each block solve of the relaxation algorithm. Finally, we note that while the standard algorithm
for nx -dimensional systems requires an nx × nx matrix inversion to calculate Yk and precondition each block prior to
applying the iterative relaxation method (Alg. 3), the algorithm can be run in a modest amount of time as detailed in
Table 1. Furthermore, other preconditioners which may be less expensive to compute can be used for larger systems,
if necessary. In this one-dimensional case, the midpoint inverse of the interval derivative was used.

F IGURE 4 The results of Example 1 are illustrated here. Lower and upper bounds shown here are respectively
the minimum and maximum values of z cv

k
( · ) and z cc

k
( · ) attained on P for each k . Upper Left: Bounds on x (p, t ) of

(21) obtained by using the two-step AM method for r = 3 with K = 30 (black), K = 40 (light gray), and K = 50 (gray).
Upper Right: Bounds on x (p, t ) of (21) obtained by using a two-step BDF method for r = 3 with K = 30 (black),
K = 40 (light gray), and K = 50 (gray). Lower Left: Bounds on x (p, t ) of (21) obtained by using the two-step AM
method for r = 3 after applying 5 iterations of the parametric interval-Newton method using K = 200. Lower Right:
Bounds on x (p, t ) of (21) obtained by using a second-order BDF method for r = 3 after applying 5 iterations of the
parametric interval-Newton method using K = 200.



M. Wilhelm et al. 21

TABLE 1 The CPU times required to construct parametric interval (PI) bounds and convex/concave
relaxation-based bounds (and associated subgradients) for Example 1 as well as the enclosure width at t = 1
associated with each variant used to construct relaxations.

Timesteps K = 10 K = 20 K = 30 K = 40 K = 50

CPU Time for 2-step AM bounds, PI + relax (s) 152×10−6 288×10−6 436×10−6 607×10−6 731×10−6

CPU Time for 2-step BDF bounds, PI + relax (s) 138×10−6 284×10−6 434×10−6 582×10−6 728×10−6

2-step AM, PI + relax, enclosure width at t = 1 0.703 0.806 0.841 0.8550 0.8634

2-step AM, PI only, enclosure width at t = 1 1.812 1.906 1.938 1.955 1.955

2-step BDF, PI + relax, enclosure width at t = 1 0.703 0.810 0.901 0.937 0.951

2-step BDF, PI only, enclosure width at t = 1 0.713 0.822 0.916 0.954 0.969

In order to compare our bounding results with those of Sahlodin and Chachuat 19, we evaluate the enclosure
width, ∆ωk , at discretization point k corresponding to time tk , as the distance between the maximum of the concave
relaxation and theminimumof the convex relaxation. For the iterative relaxationmethod, Alg. 3, ∆ωk = max

p∈P
z r ,cc
k
(p)−

min
p∈P

z r ,cv
k
(p) . For interval methods, this simplifies to the diameter of the bounding interval. For the AM-type method,

the parametric interval-Newton method is less effective and the relaxation method presented here achieves a bound
approximately one-third the enclosure width at t = 1. In the case of the BDF method, the parametric interval-Newton
method is far more effective resulting in significantly tighter refinements of X and only a 1-2% improvement was
achieved using the corresponding relaxation method. The results are summarized in Table 1.

The computational performance of the presentedmethodswere comparedwith the timings presented by Sahlodin
and Chachuat 19. The results are contained in Table 1. For a fair comparison across hardware specifications, we nor-
malize for each CPU’s single-core IPC using the Cinebench R15 (Maxon, Newbury Park, CA) single-core benchmark.
We estimate that the single core performance of our computer (Cinebench R15 score of 172) is approximately 1.51
times faster than the computer used by Sahlodin and Chachuat 19 (Cinebench R15 score of 114). Therefore, we com-
pute hardware-normalized timings by dividing the results of Sahlodin and Chachuat 19 by the factor 1.51. For K = 100

timesteps, both the two-step AM method and the two-step BDF method terminate in only 14×10−4 s and achieve
1.143 and 1.026width bounds at t = 1, respectively, for a single p point evaluation. In contrast, themethod of Sahlodin
and Chachuat 19 takes a normalized time of between 93×10−4 s and 29×10−3 s to compute bounds of width 0.914 at
t = 1 using orders 5 to 20 Taylor-series expansions. While the results obtained via the iterative relaxation (Alg. 3) are
only bounds of the numerical (approximate) solution, decreased computation time relative to the discretize-then-relax
approach may be advantageous for some problems.

Example 2 (Reversible Isomerization) Consider the simple kinetic equations that result from a reversible isomeriza-
tion reaction with k1 = 10 and k2 = 10−2 given by (22). The system initially consists of only the isomer x0 (p) = (p, 0) ,
with p ∈ P = [0.8, 1] and the reaction is allowed to progress for t ∈ I = [0, 1] seconds. The X bounds were chosen
to be nonnegative and below the maximum value of 1. As the uncertainty is present only in the initial condition, the
J s
k
(X , P ) is real valued, and the implicit function exists as J s

k
(X , P ) is nonsingular. This first-order ODE-IVP system

is a typical example of a stiff system as the reverse reaction occurs on a much longer time scale than the forward
reaction. Bounds were computed using both the two-step AM method and two-step BDF method. As illustrated by
the plots provided in Figure 5, tight bounds on the characteristically-stiff system (22) can be readily obtained using
either two-step PILMS method. For each method used, less than 1ms was needed to generate each relaxation and
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their respective subgradients at a given p reference value.

¤x1 (p, t ) = k2x2 − k1x1 (22)

¤x2 (p, t ) = k1x1 − k2x2

The sharpness of the bounds provided here can be attributed to the fact that the right-hand side of (22) is a parametric
linear equation and uncertainty is only introduced via the initial condition. As a result, the two-step PILMS schemes
themselves result in parametric linear algebraic equations as is each Newton-type update. As a consequence, the
relaxations calculated by Algorithm 1 become tight as do the relaxations generated by Algorithm 3.
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F IGURE 5 The results of Example 2 are illustrated. (Left): Bounds on x1 (p, t ) of (22) determined using the
two-step BDF (black) and Adams-Moulton methods (gray-plus) using K = 50 discretization points. (Right): Bounds
on x2 (p, t ) of (22) determined using the two-step BDF (black) and Adams-Moulton methods (gray-plus) using K = 50

discretization points.

Example 3 (Kinetic Parameter Estimation) Consider the kinetic mechanism problem first presented inMitsos et al.22

as an adaptation of the parameter estimation problem encountered for the oxygen addition to cyclohexadienyl radi-
cals10,45. The reaction mechanism can be modeled as the ODE-IVP:

¤xA (p, t ) = k1xZ xY − cO2 (k2f + k3f )xA +
k2f
K2

xD +
k3f
K3

xB − k5x2A

¤xB (p, t ) = k3f cO2xA −
(
k3f
K3

+ k4

)
xB , ¤xZ (p, t ) = −k1xZ xY

¤xD (p, t ) = k2f cO2xA −
k2f
K2

xD , ¤xY (p, t ) = −k1sxZ xY

xA,0 = 0, xB ,0 = 0, xD ,0 = 0, xY ,0 = 0.4, xZ ,0 = 140,

where xj is the concentration of species j ∈ {A,B ,D ,Y , Z }. The constants are then given by T = 273, K2 =
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46 exp(6500/T − 18) , K3 = 2K2, k1 = 53, k1s = k1 × 10−6, k5 = 1.2× 10−3, and cO2 = 2× 10
−3. Intensity versus time data

is available in Stuber46 and exhibits a known dependency on the species concentrations as I c = xA + 2
21 xB +

2
21 xD

originating from the Beer-Lambert Law with a multi-species correction 7. The unknown reaction rate constants are
k2f ∈ [10, 1200], k3f ∈ [10, 1200], and k4 ∈ [0.001, 40], and together form the parameter vector p = (k2f , k3f , k4) for
the parameter estimation problem. In Mitsos et al. 22, the explicit Euler discretization of the problem was solved by
directly calculating bounds and relaxations on the state variables for the discretization from explicitly-defined equa-
tions then propagating calculated bounds and relaxations to the objective function. An implicit Euler discretization
was constructed in Stuber et al.24 and solved via the global optimization of implicit functions approach. State variable
bounds on X provided in Stuber et al.24 were used to bound the PILMS methods used. In that work, at least nine
suboptimal local minimawere discovered and reported, motivating the need for deterministic global optimization. The
objective function for this problem is given by

φ (ẑ, p) =
n∑
i=1

(
I ci − I

d
i

)2
(23)

where I c
i
are the calculated intensity values at timestep i from the model and I d

i
are the values corresponding to the

experimental data. The performance of the algorithm is detailed in Table 2 and illustrated in Figure 6. For K = 100, the
two-stepmethods both failed to reach convergencewithin the 7200 CPU seconds allowed. Further degradation in the
convergence rates was observed on initial trials that used K = 50 steps to discretize the system. In principle, an upper
bound could be furnished by using a local solver to locate a feasible point of the full-space formulation. However, such
a routine will readily become the most expensive step of the solution process and the overall solution time will depend
heavily on heuristics used to limit the number of local solves. We omit this here for the sake of simplicity. Both the
two-step Adams-Moulton and the two-step BDF method yield a superior fit (a smaller minimum SSE) at termination
compared with the implicit Euler method for each number of time steps owing to the higher numerical accuracy of the
second-order method. This is true even for the cases that failed to converge after 7200 CPU seconds. As such, the
implicit methods presented here may be chosen to achieve an optimal trade-off between computational time spent
on each block relaxation and the number of total block relaxations. For high values of K , the number of nonlinear
computations in intermediate steps is proportional to K and complexity of the block sequential preconditioning step
of the relaxation scale linearly with K . As detailed in Table 2, no clear relationship exists between the solution time
and K . This is not entirely unexpected as each discretized model represents a fundamentally different optimization
problem that must be solved. As illustrated by the quick convergence of the two-step AM method for K = 200, some
cases exist where the decreased truncation error can be obtained at no further cost. Note that the implicit Euler
integration scheme with K = 200 was performed in Stuber et al.24. An implementation of the explicit Euler approach
presented in Mitsos et al.22 was also tested but the solver failed to converge to the desired tolerance within the time
limit (a relative gap of 3.558 × 10−2 was achieved at termination).

Example 4 (Transient Plug Flow Reactor (PFR)) In this example we consider a single-species degradation reaction in
an air-sparged PFR. Assuming that dispersion in the PFR is negligible, and first-order degradation proceeds under
isothermal conditions, the system can be modeled by the following dimensionless partial differential equation (PDE):

∂x

∂t
= − ∂x

∂y
− Dax (24)

where x is the nondimensional spatiotemporal-varying species concentration, Da = kτ is the Damköhler number, τ
[s] is the mean residence time, and k [s−1] is the first-order reaction rate constant. Parameter values for the example
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TABLE 2 The CPU times required to solve the kinetic parameter estimation problem (Ex. 3) using each bounding
method for various K values after applying five iterations of the parametric interval-Newton method.

Solution Method K Iterations Average time per iteration Solution time SSE at Solution

Implicit Euler 100 33987 45×10−3s 29.7min 26947.246

200 23,525 59×10−3s 23.4min 16796.038

2-Step AM 100 62024 12×10−2s >2 h N/A∗

200 6068 22×10−2s 22.6min 13077.998

2-Step BDF 100 88408 81×10−3s >2 h N/A∗

200 27600 26×10−2s >2 h N/A∗

Explicit Euler 100 >300,000 23×10−4s >2 h N/A

200 >300,000 24×10−4s >2 h N/A

∗Note that while these examples failed to converge to a global minimum within the 7200-second limit, in some cases,
progressive convergence is observed and additional run time may allow for full convergence.In the case of the 2-Step
BDF with K = 200, a lower bound of 12876.763 and an upper bound of 13336.471 was furnished on termination. In
contrast, minimal convergence is observed for either 2-Step method with K = 100. This suggests that the 2-Step
PILMS method may perform better when higher K values are used.
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F IGURE 6 A convergence plot of each variation of the global optimization algorithm for timesteps K = 100 and
K = 200 as demonstrated on the kinetic parameter estimation example (Ex. 3). For each K , the algorithm using the
two-step AM method produces the tightest upper bound earlier in time. However, in each case, the algorithm using
the implicit Euler scheme exhibits faster overall convergence. The user must consider the trade-off between
accuracy of the integration method (integration error) and solution time.
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are as follows: the reactor volume is 1.5×104 cm3, volumetric flow rate is 1.5×103 cm3/h, and k = 0.35h−1. The
dimensionless axial spatial coordinate is taken to be y ∈ [0, 1]. This PDE is solved via the method of lines assuming
an inlet concentration fixed to x̃0 = 1 and an otherwise zero initial concentration. This yields the following spatially-
discretized system of IVPs to be solved:

d x̃
d t
(p, t ) = − ∆x̃

∆y
− Da x̃ (25)

where∆x̃i = x̃i −x̃i−1 is the backwards finite difference of the states, and x̃ ∈ ÒN is the vector of state variables at each
discrete spatial grid point (of which there are N ). The backwards difference scheme was chosen for spatial discretiza-
tion as convection dominates the axial transport under operating conditions and central differencing schemes lead to
instability unless stepsizes are extremely restricted when using explicit methods. For comparison and visualization,
the system of ODE-IVPs given in (25) was numerically integrated using both implicit-Euler and an explicit fourth-order
Runge-Kutta (RK4). As seen in Figure 7, the solution obtained using the RK4 method exhibits oscillations throughout
the concentration profiles, while the solution obtained using the implicit Euler method does not yield oscillatory behav-
ior. This stiff behavior results from the step change in the concentration profile specified at the initial condition. This
motivates the use of implicit methods that exhibit superior numerical stability at higher temporal stepsizes and the
use of the methods developed in the Relaxation Algorithm section to construct relaxations used in the optimization
formulation. In fact, a higher accuracy model could be obtained by using central differencing spatial discretization in
conjunction with the implicit relaxation method detailed in that section. We abstained from doing this in the implicit
formulation to provide a more direct comparison with the formulation used with explicit integration schemes.
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F IGURE 7 The one-species PFR model of Example 4 is simulated using (Left) the explicit fourth-order
Runge-Kutta method and (Right) implicit (backward) Euler. The explicit method results in spurious oscillatory
behavior of the concentration profiles which is not present using the implicit method.

The PFRmodel describes a step change in the inlet concentration, whichmay result from feedstock variability or as
part of start-up operations following a shut-down. We mandate that effluent concentration must stay below λ = 0.08.
This limitation is somewhat contrived as actual conversion specifications are both process- and location-dependent. In
the case of wastewater treatment, inlet ammonia concentrations may vary by multiple orders of magnitude between
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some residential and industrial sources. Since, the PFR model is known to possess monotonic concentration profiles
with respect to both space and time, only a constraint on the last spatial discretization variable is required (i.e., the
outlet). However, the sequential-block solution structure of the algorithm and additional constraints may benefit the
B& B algorithm in quickly fathoming nonviable solutions. The implicit optimization problem formulation is given as:

φ∗ =min
p∈P

p

s.t. zK ,exit (p) − λ ≤ 0 (26)

where zK ,exit is simply the concentration at the exit of the PFR at the final time. Lastly, we assume that the reaction
is mass-transport limited and the Damköhler number by changing the flow rate of sparging air, which modulates the
local mixing rate. We assume that Da = 0.1 + 0.3p where p is normalized to a value between one and zero.

We initially endeavored to solve this problem using the state bounds X = [0, 1]N , using K = 200 fixed timesteps
and N = 20 spatial discretization points. However, no convergence was observed. Additionally, the desired accuracy
of the bounded model in concentration dictates an extremely small stepsize must be used even in conjunction with
an implicit method. In order to achieve an absolute tolerance of the integrator of 10−3, an initial stepsize of 8× 10−8 is
needed using implicit Euler while a stepsize of 2 × 10−4 is acceptable for either two-step AM or BDF methods. In this
case, the prescribed absolute tolerance represents a significantly more restrictive limit than stability (as these are A-
stable) or the stepsize limitation introduced to ensure that Assumption 3.3 is met. While the use of two-step implicit
methods achieves four orders-of-magnitude improvement over the implicit Euler method with respect to accuracy
of the bounded ODE-IVP system, the resulting 4000 state variable formulation is still intractable. We resolve these
issues by resorting to a variable timestep scheme. The timesteps to be used are determined as follows: first, we
note that the concentration profile is monotonic in time, spatial dimension, and that the concentration at a given
point in time and space exhibits a monotonic dependence on p . A variable stepsize temporal discretization scheme
was determined by integrating the ODE-IVP over a span of values of p . The timesteps corresponding to the finest
resolution discretization scheme was then used to formulate the optimization problem. This allows for a mere K = 30

temporal discretization points to be used in order to achieve the desired accuracy. As such, the model can then be
solved in the single control variable as opposed to the 601 variables (600 state variables occurring the discretization of
the ODE-IVP and 1 control variable). Interestingly, the two-step BDF method dramatically outperforms the two-step
AMmethod on this problem. Only 347 iterations are required to achieve convergence of the BDF method which was
achieved in 382 seconds of CPU time when the original bounds on X were used. The convergence profile is illustrated
in Figure 8. For the first 260 seconds, minimal improvement on the lower and upper bounds occurs while the B&B
routine naively partitions the decision space P , followed by a speedy convergence to an ε-optimal solution. In contrast,
the two-step AM method never achieved convergence in the full 24 h run time nor, in fact, any improvement on the
initial bounds in this time. As such the results were omitted from Figure 8 for the sake of clarity. One explanation for
this stark contrast between methods may be due to the fact that BDF methods are known to integrate extremely stiff
ODE-IVPs more efficiently than competing PILMS methods and this problem exhibits an extreme degree of stiffness
about the inlet at the initial time value whereas the system addressed in Example 3 (for which the two-step BDF
method had worse performance than the two-step AM method) is significantly less stiff.

Example 5 (Bounding State Trajectories of Denitrification in Biological Nutrient Removal) Currently, most wastew-
ater treatment plants operate at one-third efficiency, and aeration accounts for 45-75% of plant-wide energy con-
sumption47. By utilizing highly-predictive modeling of a wastewater treatment system, control methods can be de-
veloped to optimize aeration operations and reduce these inefficiencies. Henze and Grady’s 48 first activated sludge
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F IGURE 8 In this convergence plot, we see that the improvement of the bounds of (26) generated using the
two-step BDF method in Example 4 remains stagnant until around 250 seconds when the these bounds begin to
converge and the absolute convergence tolerance of 10−2 is satisfied for this example. At convergence, the relative
gap is approximately LBD/UBD = 0.99.

model (ASM1) provides a suitable foundation for dynamic model development. The ASM1 48 model has proved to
be an excellent tool for modeling nitrification-denitrification processes. This model includes a system of 9 ODE-IVPs
(nx = 9) and the respective rate equations for state variables ranging from autotrophic and heterotrophic bacteria to
substrate, ammonium, nitrogen, and dissolved oxygen. Here, the focus is on dissolved oxygen for optimizing aeration
operations due to its interactions in the biological system model49. A sparged CSTR model of biological nutrient re-
moval is detailed below which makes use of this ASM1 model. For typical processing parameters chosen for this case
study, the system of equations in (27) describes the kinetics of the nine species of interest:

¤x1 (p, t ) = τ (xi n,1 − x1) + 3.93(10 − x1) + r11

¤x2 (p, t ) = τ (xi n,2 − x2) + 0.484x2 + r6
¤x3 (p, t ) = τ (xi n,3 − x3) + 0.484x3 + r5

¤x4 (p, t ) = τ (xi n,4 − x4) + r2

¤x5 (p, t ) = τ (xi n,5 − x5) + r7

¤x6 (p, t ) = τ (xi n,6 − x6) + r8

¤x7 (p, t ) = τ (xi n,7 − x7) + r9

¤x8 (p, t ) = τ (xi n,8 − x8) + 0.484x8 + r4

¤x9 (p, t ) = τ (xi n,9 − x9) + 0.484x9 + r10 (27)

where the initial condition is taken to be x0 = (0.0, 91, 1075, 2.62, 33.31, 0.41, 0.93, 29.46, 2.54) [g/m3] and the reaction
rates ri , i ∈ {2, 4, 5, 6, 7, 8, 9, 10, 11} are given in (28). The half-saturation coefficients are given by, Ks = 10 [g/m3],
KX = 1 [g/m3], KNO = 0.5 [g/m3], KO = 0.3 [g/m3], KNHA = 1 [g/m3], the decay rates are bH = 0.039 [day−1] and
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bA = 0.002 [day−1]. The residence time in the reactor is τ = 1.85 [day−1]. The maximum specific hydrolysis rate is
taken to be kH = 0.125 [day−1] and the ammonification rate is kA = 0.05 [m3/(g·day)]48. The biomass yield is taken to
be yA = 0.24. An inlet composition of xi n = (0, 0.001, 96, 64, 1, 12.5, 10.1, 160, 18.28) [g/m3] is assumed.

r2 = −
µH
yH

x3x4
Ks + x4

(
x1

KO + x1
+

0.8KO
KO + x1

x5
KNO + x5

)
+ kH x3

x8/x3
KX + x8/x3

(
x1

KO + x1

)
. . . +

0.8KO
KO + x1

(
x5

KNO + x1

)
r4 = 0.92(bH x3 + bAx2) − kH x3

x8/x3
KX + x8/x3

(
x1

KO + x1

)
+

0.8KO
KO + x1

(
x5

KNO + x5

)
r5 = µH

x3x4
Ks + x4

(
x1

KO + x1
+ 0.8

KO
KO + x1

x5
KNO + x5

)
− bH x3

r6 = µA
x2x6

KNHA + x6

(
x1

KO + x1

)
− bAx2

r7 = −0.088µH
x3x4
Ks + x4

KO
KO + x1

(
x5

KNO + x5

)
+
µA
yA

x2x6
KNHA + x6

(
x1

KO + x1

)
r8 = −0.068µH

x3x4
Ks + x4

(
x1

KO + x1
+

KO
KO + x1

0.8x5
KNO + x5

)
− µA

4.23x6
KNHA + x6

(
x1x2

KO + x1

)
+ kAx7x3

r9 = −kAx7x3 + kH x3
x9/x3

KX + x8/x3

(
x1

KO + x1

)
+

0.8KO
KO + x1

(
x5

KNO + x5

)
r10 = 0.063(bH x3 + bAx2) − kH

(x9/x3)
KX + x8/x3

(
x1x3

KO + x1

)
+

0.8KO
(KO + x1)

(
x5

(KNO + x5)

)
r11 = −

(
0.32µH

x4x3
Ks + x4

+ 18.04µA
x6x2

KNHA + x6

)
x1

KO + x1
(28)

This system consists of several reactions that operate on significantly different time scales, and as a result is charac-
terized by a large degree of stiffness50. In practice, exact kinetics may depend on the exact bacterial ecology of the
process unit. Both the maximum specific growth rate for heterotrophs, µH , and for autotrophs, µA potentially depend
on such ecological considerations. We make use of the two-step AM method to generate bounds on the parametric
ODE-IVP defined by, (27), and (28) with µH ∈ [0.14, 0.16] and µA ∈ [0.019, 0.021]. Plots of the bounds generated
using the two-step AM method are included in Figure 9 along with select trajectories from numerically integrating
these equations at typical values of µA and µH in this range. No parametric interval method was used to contract the
bounds prior to generating these plots. The system was then numerically integrated over an 8-hour time interval to
simulate the resulting transients. The bounds on the states are given by xL = (0, 90, 900, 0.25, 25, 0.2, 0.01, 25, 2.5) and
xU = (8, 94, 1100, 2.75, 40, 2.0, 0.93, 400, 50) . Applying parametric interval-Newton yields state variable bounds that
have been contracted into the interior of the initial bounds confirming that a unique implicit function exists on this
domain.

Valid bounds can also be generated using the two-step BDF method. However, for the initial µH , µA intervals
considered these bounds are not significantly tighter than the original bounds provided by xL and xU while the two-
step AM method yield significant refinement to the initial bounds. Again, this is likely due to competing sources of
wrapping effects present in either method: whether the additional function evaluation results in a more expansive
relaxation than the inclusion of additional subtraction operators, or vice versa.
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F IGURE 9 The results from Example 5 are illustrated. (Top): Bounds on x4 (p, t ) determined using the two-step
Adams-Moulton method using K = 200 discretization points. (Bottom): Bounds on x5 (p, t ) determined using the
two-step Adams-Moulton method using K = 200 discretization points.

Conclusion

In this work, the guaranteed global solution of dynamic optimization problems was addressed, with specific interest
in the application to stiff parametric ODE-IVP systems. This interest was motivated by process systems engineering
applications of model-based design, rigorous model validation, optimal control, and robust control.

In the developed approach, the dynamic optimization problem was reformulated as an equality-constrained NLP
by discretizing the time horizon and applying an unconditionally-stable implicit integration scheme to form the equality
constraint equations. Specifically, two second-order implicit linear multistep integration methods were considered:
the two-step Adams-Moulton and the two-step backward-difference formula methods. The equality constraints were
subsequently eliminated from the nonlinear programming formulation with the introduction of an implicit function as
the (parametric) solution of the equality constraints taken as a large systemof parametric nonlinear algebraic equations.
The algebraic systems formed from this approach exhibit a sparse block-diagonal occurrence matrix which can be
exploited for numerical efficiency in numerical equation solving as well as in the construction of rigorous bounds and



30 M. Wilhelm et al.

convex/concave relaxations of implicit function solutions. The theory of convex and concave relaxations of implicit
functions24 was extended to cover this class of problems with this special structure to provide the necessary bounds
required for deterministic global optimization using the spatial B&B framework. The methods were demonstrated on
five examples relevant in process systems engineering to illustrate the calculation of rigorous bounds and the solution
of the nonconvex dynamic optimization problem to guaranteed global optimality. Overall, this approach yields tight,
accurate, and fast bounds on numerical approximations of the state trajectories of stiff systems enabling the efficient
solution of a class of deterministic global optimization problems with stiff dynamical systems embedded.

This work serves as the foundation for future work on robust design (including robust control) problems for rig-
orous worst-case performance and safety verification under transients as well as rigorous dynamic flexibility analysis
for general nonconvex dynamical systems models.
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