Automatic source code generation for deterministic global
optimization with parallel architectures

Robert X. Gottlieb, Pengfei Xu, and Matthew D. Stuber

Process Systems and Operations Research Laboratory, Department of Chemical and
Biomolecular Engineering, University of Connecticut, Storrs, CT, USA

ARTICLE HISTORY
Compiled January 27, 2026

ABSTRACT

Trends over the past two decades indicate that much of the performance gains
of commercial optimization solvers is due to improvements in x86 hardware. To
continue making progress, it is critical to consider alternative/specialized massively
parallel computing architectures. In this work, we detail the development of an open-
source source code transformation approach built using Symbolics. jl to construct
McCormick-based relaxations of functions that enables their effective parallelized
evaluation. We then apply this approach in a novel parallelized branch-and-bound
routine that offloads lower- and upper-bounding problems to a GPU. The effective-
ness of this new approach is demonstrated on three nonconvex problems of interest,
where it yields convergence time improvements of 22-118x compared to an equiva-
lent serial CPU implementation and in two cases outperforms vanilla branch-and-
bound versions of existing state-of-the-art solvers that use tighter bounding tech-
niques. This work exemplifies how deterministic global optimizers using alternative
hardware architectures can compete with—or eventually outclass—even the most
powerful serial CPU implementations, and to the best of the authors’ knowledge,
represents the first successful demonstration of deterministic global optimization
using a GPU.

KEYWORDS
dynamical systems; parameter estimation; factorable programming; open-source
software; McCormick relaxations

AMS CLASSIFICATION
90C26; 90-04; 65G30; 26B25; 65Y05

1. Introduction and motivation

Optimization research over the past several decades has led to an increase in the num-
ber and types of solvable problems, but as recently observed by Koch et al. [25], much
of the perceived performance improvements of mixed-integer programming solvers were
the result of advances in CPU hardware [25]. However, with the death of Moore’s Law
[37, 56], CPU hardware is not improving at the same high rate as in past decades.

Author’s final accepted version. Published version: Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic
Source Code Generation for Deterministic Global Optimization With Parallel Architectures. (2024) pp 1-39.
DOI: 10.1080/10556788.2024.2396297

Corresponding author: M.D. Stuber. Email: stuber@alum.mit.edu

https://doi.org/10.1080/10556788.2024.2396297

This performance slump is especially hard-hitting for deterministic global optimiza-
tion solvers which are, to the best of our knowledge, exclusively designed to run on
CPUs. Other application areas of process systems engineering that were tradition-
ally designed for CPU operation, such as data analytics, simulation, and control, have
found improved performance by utilizing alternative hardware architectures, including
graphics processing units (GPUs) and application-specific integrated circuits (ASICs)
[3, 4]. GPUs in particular are a common, cost-effective, and scalable way to gain mas-
sive speedups for specialized computations through parallel computing. The successes
of parallelization in a variety of fields are well documented [15], yet to the best of
our knowledge, there has been no publication documenting the use of GPUs for de-
terministic global optimization. With earlier preliminary results from this paper first
reported at the AIChE Annual Meeting 2022 [16] and FOCAPO-CPC 2023 [18], this
article aims to detail the full development of the method, software implementation,
and benchmarking for the first successful implementation, to the best of our knowl-
edge, of a deterministic global optimization algorithm designed to function on a GPU
for massive parallelization.

Modern deterministic global optimization solvers (BARON [38], ANTIGONE |[31],
SCIP [7, 52], MAINGO [8], EAGO [59], etc.) rely on some variation of spatial branch-
and-bound (B&B), where, for each spatial subdomain, a mathematically rigorous lower
bound of the objective function must be obtained. One way to obtain these lower
bounds is to apply the rules laid out by McCormick [30]. These rules were later for-
malized for use in a forward mode to operate on generic algorithms by Mitsos et al.
[32], generalized by Scott et al. [39], extended to implicit functions by Stuber et al. [44],
developed for use in a reverse mode by Wechsung et al. [55], and modified to ensure
differentiability by Khan et al. [23, 24], among other recent developments. Through
the McCormick composition theorem provided in Section 2, the McCormick-based
approaches enable convex and concave relaxations—and therefore lower and upper
bounds, respectively—to be generated for arbitrarily complicated expressions. As ob-
served by Mitsos et al. [32], the automatic construction of convex/concave relaxations
via these rules is similar to the concept of automatic differentiation (AD). Due to
this similarity, the implementation of automatic McCormick relaxations can be ac-
complished using the same techniques as AD; namely: operator overloading (OO) and
source code transformation (SCT) [20].

Briefly, OO for AD involves the definition of a variable type for floating-point num-
bers and their associated gradients. Operations such as those for elementary arithmetic
can be defined for these variable types to compute the result of the operation applied
to the floating-point values as well as their associated gradients [6]. SCT, on the other
hand, involves the automated rewriting or generation of source code that computes
the derivative of an expression as a subroutine call [6].

AD is critically important for a variety of numerical computing tasks, including
machine learning [2], computational fluid dynamics [22], and quantum chemistry [6].
In machine learning, for example, backpropagation and gradient-based optimization
are ubiquitous for model training, and consequently several AD software tools have
been developed specifically for use in machine learning applications [2]. In this appli-
cation space, OO-based AD is more common (e.g., autograd [28], PyTorch [36], among
others), but recent SCT implementations exist as well (e.g., Tangent [50, 51], etc.).
As it pertains to the present work, there have been several successes in parallelizing
these methods on GPU hardware that have accelerated the speed of machine learning
model training and development [11, 26, 34, 49], although those developments did not
directly guide this work. Generally, OO approaches are simpler to implement and can

be flexibly used, but incur a runtime overhead time cost, whereas SCT approaches have
much higher implementation complexity but can facilitate compiler optimizations that
result in faster execution of the generated code [6].

For deterministic global optimization, all existing implementations of the rules of
McCormick that we are aware of (e.g., MC++ [9], McCormick. j1 [57]) rely on OO, or the
analogous multiple dispatch in the Julia language. In McCormick. j1, for example, the
MC structure is defined, and new methods are created for the arithmetic operators and
a library of univariate intrinsic functions that apply the McCormick calculation rules
when they are dispatched on MC objects. Such an approach is adequate for cases where
the relaxation calculations do not account for a high proportion of runtime require-
ments [32], but if relaxations are to be evaluated thousands or millions of times, as may
happen in comparatively large global optimization problems, the combined overhead
times may be substantial. Additionally, approaches such as McCormick. jl are incom-
patible with general-purpose computing on GPUs (GPGPU). Any implementation of
GPGPU of a deterministic global optimizer that utilizes McCormick-based relaxations
would therefore need an alternative method of evaluating those relaxations.

In this paper, we employ the SCT approach to interpret mathematical expressions
and automatically generate static functions that represent convex underestimators,
concave overestimators, and interval extensions of the original expressions. By design,
these generated functions are compatible with GPU operation, enabling the paral-
lelized evaluation of convex relaxations at multiple points. Additionally, a custom
B&B routine has been developed to exploit this parallelism to solve lower-bounding
problems of the B&B framework entirely on a GPU.

The remainder of this paper is structured as follows. Section 2 describes the mathe-
matical conventions used in this paper and provides a brief overview of convex analysis
and the rules of McCormick. In Section 3, we describe the implementation of the SCT
approach capable of generating convex evaluator functions and describe how this ap-
proach can be used within deterministic global optimization contexts. Subsequently,
in Section 4, we present the numerical results arising from a benchmark comparison
between the SCT-based product of this work and the multiple dispatch approach of
McCormick. j1, and then provide several numerical examples of optimization problems
solved using this approach. Lastly, in Section 6, we reflect on the technical challenges
associated with this new method and software implementation, and we present our
plans for future improvements.

2. Mathematical background

2.1. Interval arithmetic

The following notation will be used throughout this paper. Scalar quantities are de-
noted by lower-case letters (e.g., a) and vectors are denoted by boldface lower-case
letters (e.g., a). A nonempty compact set A = [aL , aU] represents an n-dimensional
interval defined as A = {a eR*:al <a< aU} with a’ and a¥ the lower and upper
bounds of the interval, respectively, and A; represents the i-th component of the inter-
val A. A set B™ is defined as the Cartesian product B" = B x B x ... x B for B C R.
Additionally, let TR™ be the set of all n-dimensional intervals and for any D C R"™,
ID = {X €IR": X € D} is the set of all interval subsets of D. Furthermore, let the
diameter of an interval X € IR"™ be defined as diam (X) = xY —x and the radius be
given by rad (X) = diam (X) /2. An inclusion monotonic interval extension [33, Sec-

tions 3.2-3.3] of the real-valued mapping f : R” — R™ on the interval X € IR" will be
denoted by F(X) = [f£(X),fV(X)]. The image of D C R™ under the mapping f will
be denoted f(D). From the Fundamental Theorem of Interval Analysis [33, Theorem

~

3.1], £(X) c F(X).

2.2. Convex and concave relaxations

Definition 2.1 (Convex and Concave Relaxations [32]). Given a convex set Z C R"
and a function f : Z — R, a convex function f< : Z — R is a convex relaxation of f
on Z if f (z) < f(z) for every z € Z. A concave function f°: 7 — R is a concave
relaxation of f on Z if f°(z) > f(z) for every z € Z.

Note that convex and concave relaxations of vector-valued functions f : Z7 — R™
are defined by applying the inequalities in Definition 2.1 componentwise [44].

Definition 2.2 (Convex and Concave Envelope [60]). Let f: Z — R where Z C R"
is a nonempty convex set. The conver envelope of f on Z is the convex relaxation
fevemr o Z— R such that fU(z) < f¢"(z) holds for all z € Z and every convex
relaxation f< of f on Z. Similarly, the concave envelope of f on Z is the concave
relaxation f“¢" : Z — R such that f“(z) > f°““"(z) holds for all z € Z and every
concave relaxation f° of f on Z.

Definition 2.3 (Univariate Intrinsic Function [39]). The function u: B C R — R is
a univariate intrinsic function if, for any A € IB, the following are known and can be
evaluated computationally:

e an inclusion monotonic interval extension of u on A,
e a convex relaxation of uw on A,
e a concave relaxation of u on A.

Definition 2.4 (Factorable Function [39]). A function .# : Z C R" — R is factorable
if it can be expressed in terms of a finite number of factors v1, ..., v, such that given
z€ Z,v; =z fori=1,...,n, and vy is defined for n < k < m as either

e v, =v; +vj, with 7,5 <k, or
e v, = v;vj, with 4,5 <k, or
o v = u(v;), with ¢ < k, where uy, : By, — R is a univariate intrinsic function,

and #(z) = vy (2z) for every z € Z. A vector-valued function is factorable if each of
its components is a factorable function.

Definition 2.5 (Cumulative Mapping [39]). Let the cumulative mapping vy be the
mapping vg : Z — R defined for each z € Z by the value vi(z) when the factors of .#
are computed recursively, as per Definition 2.4, beginning from z.

Definition 2.6 (Composite Relaxations [44]). Let D C R", Z € ID, and P € IR"».
Define the mapping G : D x P — R". The functions ug,0og : R" x R" x P —
R"™ are called composite relaxations of G on Z x P if for ¥, ¢ : P — R", the
functions ug (¢ (+),¥(+),-) and og(¥p (+),¥(+),) are, respectively, convex and
concave relaxations of G (q(+),+) on P for any function q : P — Z and any pair of
convex and concave relaxations (¢, 1) of q on P.

The concept of composite relaxations is introduced to formalize the notion of con-

structing convex and concave relaxations of composite functions on the domain of the
inner function. It makes explicit the relationship of convex and concave relaxations of
the outer function on its domain with respect to convex and concave relaxations of the
inner function on its domain. This is somewhat nuanced but is useful herein because
convex and concave relaxations of the inner function on its domain may be known a
priori or calculated by some other algorithmic procedure, and, through the notion of
the composite relaxation, can simply be treated as convex and concave relaxations of a
cumulative mapping on its domain and used to define convex and concave relaxations
of a composite function involving the cumulative mapping. This property is explicitly
referenced and utilized in Section 3.3.

2.3. McCormaick relaxations

Definition 2.7 (McCormick Relaxations [32]). Relaxations of factorable functions
that are formed from the recursive application of univariate composition, binary mul-
tiplication, and binary addition from convex and concave relaxations of univariate
intrinsic functions, without the introduction of auxiliary variables, are referred to as
McCormick relaxations.

The developments of Section 3 rely on generalized McCormick relaxations—under
which the relaxations of Definition 2.7 are a special case—that were developed by
Scott et al. [39]. Summarily, Scott et al. [39] formalized a more general definition
and construction framework than the relaxations defined by McCormick [30], which
made it possible to construct composite relaxations described by Definition 2.6. The
reader is directed to [39] for complete definitions and analyses of both the standard
and generalized McCormick relaxations.

A well-known alternative to the construction of McCormick relaxations for use in a
B&B algorithm is the use of the auziliary variable method [30, 41, 45, 47], in which new
variables are created to replace univariate compositions and binary operations. That is,
each v in Definition 2.4 is maintained as a new problem variable. This method raises
the dimensionality of the problem, which enables some mathematical simplifications
and allows for potentially tighter relaxations of the problem than can typically be
obtained from McCormick relaxations [46]. However, the introduction of auxiliary
variables increases the dimensionality of the problem, and for certain problems this
may not be beneficial. The auxiliary variable method is utilized to great effect by the
commercial solvers BARON [38] and ANTIGONE [31].

Definition 2.8 (Mid Function [32]). Given three numbers «, 3,7 € R, the mid func-
tion is defined as

a iff<a<yory<a<p,
mid{a, 8,7} ={f fa<f<yory<p<a,
7 fa<y<pBorf<y<a

Proposition 2.9 (Relaxations of Sums [32]). Let Z C R"™ be a nonempty convex set,
and g, 91,92 : Z — R such that g(z) = g1(z) + g2(z). Let g{*, 9{° : Z — R be a convex
and concave relaxation of g1 on Z, respectively. Similarly, let g5°,95° : Z — R be a
convex and concave relaxation of go on Z, respectively. Then, gV, g% : Z — R, such

that

97 (z) = 97°(2) + 95" (2), 9*(2) = 91°(2) + 95°(2),
are, respectively, a convex and concave relaxation of g on Z.

Proposition 2.10 (Relaxations of Products [32]). Let Z C R™ be a nonempty convex
set, and g, g1, g2 : Z — R such that g(z) = g1(2)g2(z). Let ¢g5¥ ,gl : Z — R be a convex
and concave relazation of g1 on Z, respectively. Similarly, let g5¢, g5¢ : Z — R be a con-
ver and concave relaxation of ga on Z, respectively. Furthermore, let g, gV, g¥ g¥ € R
such that

g <qgz)<gV foralzeZ and g <gi(z)<gy¥ foralzeZ.

Consider the following intermediate functions, a1, a2, B1, 82,71, Y2,01,02 : Z — R:

a1(z) = min {g5¢5" (2), 95957 (2) } , as(z) = min {g{'g5" (2), 91 95°(2) } ,
Bi(z) = min {g5 " (2), 95 97°(2) } , Ba(z) = min {g7 g5 (2), 97 95°(2) } ,
7 (z) = max {g5 97" (z), g5 9i°(2) } , 2(2z) = max {g{ 95" (), 97 g5°(2) } ,
81(z) = max { g5 g§"(2), g5 91°(2) } , 52(z) = max {g{' g5" (2), 91 95°(2) } -

Then, a1, ag, B1, P2 are conver on Z, while v1, 2, 01, and d2 are concave on Z.
Moreover, g¢°, g°¢ : Z — R, such that

9% (z) = max {1 (z) + aa(z) — gL'9%, Pi(z)+ﬁ2 — Vg5 },
9°(2) = min {v1(2) + 12(2) — g7 93, 01(z) + S2(z 9195]}

are, respectively, a convexr and concave relaxation of g on Z.

Theorem 2.11 (McCormick’s Composition Theorem [30, 32]). Let Z C R" and X C
R be nonempty conver sets. Consider the composite function g = Fo f, where f : Z —
R is continuous, F : X — R, and let f(Z) C X. Suppose that a convex relaxation
¢ Z — R and a concave relaxation f¢ : Z — R of f on Z are known. Let
Fv . X — R be a convexr relaxation of F' on X, let F°° : X — R be a concave
relazation of F on X, let 2™ € X be a point at which F attains its infimum on
X, and let x™® € X be a point at which F° attains its supremum on X. Then,
@ Z =R,

g () ch (Inld {fcv fCC() mln})

1s a convex relaxation of g on Z, and g : Z — R,

9°(z) = F* (mid {f(2), f“(z), z™*})

is a concave relaxation of g on Z. By definition f(z) < f(z), and therefore,

[i @<),
mid {fcv fcc() mln} — fcc(z) Zf pmin - fcc(z)’

mm otherwise,

f(z) if 2 < f(2),
mid {f(2), f“(2), 2™} = ¢ [<(z) if 2™ > [*(2),

max

x otherwise.

2.4. Spatial branch-and-bound

Consider a nonconvex NLP:

£ = Floc') =min £(x)
st. x e FCRY,

where f : D — R is the objective function and F C D C R" is the feasible set. Assum-
ing that f* exists and it is possible to compute suitable lower bounds for min f(M)
for at least some sets M C D, a B&B method can be applied [21]. As laid out by
Horst and Tuy [21], the basic idea of the spatial B&B framework is summarized in
Algorithm 1. The reader is directed to Wilhelm and Stuber [59, Alg. 3.1] for a detailed
B&B algorithm as it is implemented in the open-source solver EAGO. Summarily,
EAGO follows the framework described by Algorithm 1 where upper bounds for parti-
tion elements are obtained by passing subproblems to an NLP solver such as EAGO’s
default IPOPT [53] and lower bounds for partition elements are determined by gener-
ating subtangent hyperplanes of McCormick relaxations (Def. 2.7) to create a linear
programming (LP) problem, which is then passed to an LP solver such as EAGO’s
default Cbc [14]. EAGO also has several pre- and post-processing features that are
described in greater detail by Wilhelm and Stuber [59].

Algorithm 1 Spatial Branch-and-Bound (B&B)
(1) Start with a relaxed feasible set M FO) O F, such that M) € ID and partition
M© into finitely many subsets M® i=1,... n,.
(2) For each i, determine lower and (if possible) upper bounds LBD; and UBD;,
respectively, satisfying:

LBD; < inf f(M® N F) < UBD;.

Then LBD := min LBD;, UBD := min UBD; are global bounds, meaning that
(2 7

LBD < min f(F) < UBD.

(3) If UBD = LBD (or, for some prescribed €15, €rel > 0, we have UBD — LBD <
€abs OF [UBD — LBD|/max(|UBD|,|LBD|) < €;qa1), then stop.

(4) Otherwise, select some of the subsets M(*) and partition these chosen subsets
to obtain a refined partition of M. Return to Step (2) to determine new,
hopefully tighter global bounds using the refined partition.

Step 4 of Algorithm 1 involves partitioning an element M (1) which is a process
referred to as “branching.” Branching is most commonly done by bisecting an existing
element in one dimension of the decision variables (i.e., the variable is “branched
on”). This partitioning strategy is commonly visualized as an undirected graph and

as a B&B tree whose nodes are elements of the partition. When an element of the
current partition is branched, the depth of the B&B tree increases with the addition
of two child nodes. All terminal nodes are referred to as “leaves” and collectively
comprise a partition of M), Because the B&B algorithm relies on further partitioning
existing elements of the partition, this method is particularly susceptible to the curse
of dimensionality. That is, as the problem dimensionality grows, the search space
becomes exponentially larger, and in the worst case, exponentially more branches are
required to obtain small nodes and tight relaxations.

One common way to obtain LBD; for min f(FNM®) or min f(M®) in Algorithm
1 is by minimizing a suitable convex relaxation of f on M ® as described in Definition
2.1. Existing implementations of B&B operate by selecting an individual element of the
partition M®, creating and solving a convex subproblem to obtain LBD;, and further
partitioning element M () before repeating the process. As indicated in the process laid
out by Horst and Tuy [21], in principle, multiple elements of the partition M () may be
selected in each iteration. However, in practice, multiple elements are not addressed
simultaneously, and Steps 2 through 4 are iterated on for each i. One of the novel
contributions of this paper is a B&B algorithm capable of handling multiple partition
elements simultaneously by exploiting computing hardware designed to accelerate such
parallelized processes.

3. Software development

One key product of this work is a GPU-compatible SCT approach to construct
McCormick-based relaxations. These relaxations are then used in a novel B&B routine
to process (i.e., solve lower- and upper-bounding problems) multiple partition elements
(nodes) in parallel, which is described at the end of this section. Previous methods of
creating relaxations by applying McCormick arithmetic include MC++ [9], written in
C++ and used in the MAINGO solver [8], and McCormick.jl [57], written in Julia
and used in the EAGO solver [59]. Both of these approaches comprise intrinsic func-
tion libraries and an OO-like scheme to construct relaxations in a functionally and
mathematically equivalent way, just in different programming languages.

Similar to the ways that forward-mode AD is accomplished, it is also possible
to implement the rules of McCormick via SCT. A first implementation of this new
approach is currently, at the time of writing, under active development within the
SourceCodeMcCormick. j1 (SCMC) package, which is available publicly on GitHub [17].
As a brief summary of its operation: SCMC uses the Julia package Symbolics. j1 [19] to
decompose mathematical expressions, applies the generalized McCormick relaxation
rules [39, 57] and interval bounding rules based on interval arithmetic and natural in-
terval extensions [33], creates source code that computes McCormick relaxations and
inclusion monotonic interval extensions associated with the original expression, and
then compiles the source code into functions that return inclusion monotonic interval
extensions and pointwise values of convex and concave relaxations of the original input
expression. The intended use for these evaluator functions is to evaluate relaxations
at a large number of points on potentially different domains within a single function
call, and thereby exploit the parallel computing capabilities of GPUs.

SCMC relies on several features of the Symbolics.jl package to operate. Pri-
marily, Symbolics.jl is used as a symbolic algebra system that enables Mc-
Cormick relaxations to be expressed symbolically. These relaxations are then com-
posed together to create expressions representing composite relaxations using the

Listing 1 A truncated version of the SCMC convex_evaluator function is presented. convex_evaluator accepts
a mathematical expression composed of Symbolics.jl-type variables and returns a function that evaluates a
convex relaxation of the input mathematical expression, as well as an ordered list of variables to inform the
user as to the input format of the generated function.

1 function convex_evaluator (term::Symbolics.Num)

2 step_1 = apply_transform(McCormickIntervalTransform(), term)

3 step_2 = shrink_eqs(step_1)

4 ordered_vars = pull_vars(step_2)

5 Q@eval new_func = $(build_function(step_2[3].rhs, ordered_vars...))
6 return new_func, ordered_vars

7 end

Symbolics.substitute function, and the final expressions are converted into callable
functions using the Symbolics.build_function routine. Further details of how these
utilities are employed by SCMC are presented in the remainder of this section.

A truncated version of convex_evaluator, one of the main user-facing utilities in
SCMC, is presented in Listing 1. This utility creates an evaluator function for the convex
relaxation of a math expression. The following subsections will detail the mechanism of
this function to describe how an input expression is converted to an evaluator function.

3.1. Factorization and computational graph generation

The SCMC package exploits the factorability of functions of interest to construct
McCormick-based relaxations. As such, we must make the practical and generally
non-restricting assumption that all functions of interest are factorable. When the
user inputs a mathematical expression into an evaluator generation function such
as convex_evaluator shown in Listing 1, the expression is automatically factored
into binary and univariate terms to generate a primal trace of the expression, from
which a computational graph can be inferred. The generation of a primal trace can
be seen for a representative expression in Listing 2, with the resulting primal trace
and its corresponding computational graph shown in Figure 1 (left and center, respec-
tively). Elements of the primal trace of the expression are represented in the graph
as nodes, which are joined by labeled arcs that represent binary addition, multipli-
cation, or division (i.e., inversion of the denominator multiplied by the numerator
[32, 39, 57, 61]), or are individually operated on by a univariate intrinsic function.
This is analogous to the auxiliary variable method of generating relaxations in that
each node can be thought of as an auxiliary variable representing an intermediate
term in the calculation of the original expression. However, unlike in the auxiliary
variable method, when McCormick-based relaxations of the original expression are
ultimately generated, these auxiliary variables are eliminated as intermediates and
do not appear in the final calculation. Internally, SCMC represents the trace as a
vector with elements of type Symbolics.Equation, where the left-hand sides are
the auxiliary variables and the right-hand sides are the corresponding factored ex-
pressions. The left- and right-hand sides of these Equations are maintained as type
SymbolicUtils.BasicSymbolic{Real}, where SymbolicUtils. jl is the foundation
for Symbolics.jl.

For ease of organizing the necessary data and computed values, we define the fol-
lowing data structure, which is analogous to the tuples that are often defined in AD

libraries (e.g., (f(x), f'(x))).

Listing 2 An example showing how SCMC can be used to create a primal trace of a mathematical expression.
Note that this step is for demonstration and analysis purposes and is not necessary for standard use cases of
SCMC.

1 using SourceCodeMcCormick, Symbolics
2 @variables x, y

3 expr = exp(x/y) - (xxy~2)/(y+1)

4 trace = factor (expr)

V1 =

V2 =Y

U3 = Ul/vz
vg = exp(vs3)
Vs = v%

Vg = V1V5

U7 = —Ug

Vg = Vg + 1.0
Vg = U?/Us

V10 = V4 + Vg

D@
D D

Figure 1. (left) The primal trace of the expression exp(z/y) — zy?/(y + 1), (center) the associated com-
putational graph, and (right) the expanded computational graph. The nodes in the original computational
graph are split into their McCormick tuples, creating the expanded computational graph. For nodes that were
connected in the original graph, their McCormick tuples are connected in the expanded graph. Although the
density of interrelationships between nodes in the expanded graph is high, the overall structure is comparable
to the original computational graph.

Definition 3.1 (McCormick Tuple). Consider a cumulative mapping v, : Z €
IR" — R. A McCormick tuple will be the collection of four symbolic elements:
(vk_cv, vk cc, vk lo, vk hi) that represents {v§’(-), v{(-), vE(Z), vY(Z)}. A Mc-
Cormick tuple of a base variable z will be (z_cv, z_cc, z_lo, z_hi).

Note that this definition of a McCormick tuple is very closely related to the septuple
defined by Mitsos et al. [32] and the McCormick object defined by Ye and Scott [61]
with a few exceptions. First, the septuple of Mitsos et al. [32] includes the cumulative
mapping v and subgradient information. Subgradients are currently not included in
the proposed approach, as discussed in Section 5. The McCormick objects of Ye and
Scott [61] are functionally equivalent (despite differences in organization) to Definition
3.1 with the nuance that McCormick objects are defined with real-valued components
(i.e., pointwise with respect to the independent variable for McCormick relaxations),
whereas the McCormick tuple of Definition 3.1 contains the actual functions repre-
senting McCormick relaxations.

10

Listing 3 Output from the apply_transform function applied to the expression x 4+ y. The variables z and y
are extended to their McCormick tuples, and elements of the McCormick tuple of the resulting expression are
labeled as result_x. The tilde character (~) is used to represent equality in Symbolics.Equations.

1 julia> apply_transform(McCormickIntervalTransform(), x+y)

2 4-element Vector{Equation}:
3 result_lo ~ x_lo + y_lo
4 result_hi ~ x_hi + y_hi
5 result_cv 7 x_cv + y_cv
6 result_cc ~ x_cc + y_cc

Once a function is factored (a computational graph is prepared), SCMC proceeds
by creating a McCormick tuple of each base variable (e.g., x). If a base variable is
being branched on in a B&B scheme, its interval bounds will be the lower and upper
bounds of the B&B node for this variable, and its convex and concave relaxations will
simply take the value z where the relaxation of the primal expression is desired (i.e.,
x_cv =x_cc = z) [39, Def. 9, Step 2]. The computational graph is then processed in a
forward mode as follows. Starting from the children of the root nodes, each node is
extended into its McCormick tuple by applying the McCormick rule(s) corresponding
to the operation that fed into the node, with the McCormick tuple(s) of the parent
node(s) as inputs. An example of the process of extending base variables and factors
into their McCormick tuples is shown in Figure 1. While a basic computational graph
that represents the primal trace of a function has m — n nodes (not including the
base variable nodes), where each has at most 2 inputs, the result of the application of
McCormick rules is a larger computational graph with 4(m — n) nodes, each having
at most 8 inputs. In this new graph, each node represents one part of its origin node’s
McCormick tuple.

The process described so far, including the factorization step and the application
of McCormick rules, occurs in Line 2 of Listing 1. Specifically, the apply_transform
function combines the factorization and McCormick rule application steps to output a
vector with elements of type Equation. In this vector, the left-hand sides are variables
of type BasicSymbolic{Real}, representing individual elements of the McCormick
tuples of the auxiliary variables, and the right-hand sides are the symbolic represen-
tations of the appropriate McCormick rule(s), stored as type BasicSymbolic{Real}.
A trivial example of this structure is displayed in Listing 3, which shows the vector of
Equations that result from applying the apply_transform function to the expression
x + y, where x and y are Symbolics.jl variables (wrapped in the Symbolics.Num
type).

Following the application of McCormick rules, the computational graph is collapsed
via edge contraction to eliminate auxiliary variables until only the four deepest nodes—
the McCormick tuple of the original full expression—remain. This step occurs in Line
3 of Listing 1, using the utility shrink eqs. The function works by selecting the
first Equation in the input vector and replacing all instances of the Equation’s left-
hand side with its right-hand side for all other Equations in the vector using the
SymbolicUtils.substitute subroutine. That is, it replaces instances of elements
of McCormick tuples of auxiliary variables with the expressions representing their
associated McCormick rule(s). This process is repeated iteratively to eliminate the
McCormick tuples of all auxiliary variables. The end result is a vector with four com-
ponents of type Equation, where the left-hand sides are Symbolics. j1 variable repre-
sentations of the McCormick tuple of the original expression, and the right-hand sides
are the symbolic compositions of all the McCormick rules that made up the original

11

expression. By eliminating the auxiliary variables and composing rules starting from
the base variables, these four expressions are only functions of the McCormick tuples
of the base variables.

One key property of McCormick relaxations, as illustrated by Proposition 2.10 and
Theorem 2.11, is that the mathematical structure of f(x) depends not only on the
expression of f, but also on the bounds of the domain of x (i.e., X = [x!,xY]). As an
aside, the development of the generalized McCormick relaxation [39] made this depen-
dence explicit. McCormick. j1 handles this type of bounds dependence through the use
of control flow in its OO-like scheme. That is, different software functions will be called
depending on logic statements based on the bounds of the input variable(s). In the
novel source code generation approach of SCMC, this bounds dependence is accounted
for using the Julia ifelse function. By deeply nesting these ifelse functions within
one another, all possible mathematical structures of a relaxation that arise from com-
posing McCormick rules together can be contained within a single code expression,
where the output of the expression depends on the same type of logic statements used
in typical OO schemes.

An example of how the ifelse function is used within SCMC can be seen in Listing 4.
This listing shows a simplified version of the McCormick rule that SCMC applies for the
multiplication of two terms, truncated to show only the convex relaxation part of the
function. By using ifelse functions, this expression captures all possible realizations
of the convex relaxation arising from a multiplication step within a single Equation.
Because the input McCormick tuples are treated symbolically, during the edge con-
traction step, these symbolic variables can be replaced by full symbolic expressions of
the McCormick tuples of the inputs thereby resulting in a more deeply nested ifelse
expression that encodes the combined rules of multiple mathematical operations.

A key benefit of this approach is that, because ifelse is a function, SCMC can con-
tinue to work in the environment of the Symbolics. j1 symbolic algebra system, which
is important for the source code generation process, while still utilizing the control de-
cisions necessary for building McCormick relaxations. As discussed in Section 3.4, in
practice, the complexity of representable factorable functions that are represented in
this manner is limited due to the rapidly increasing length of such expressions. That
is, the output from the shrink_eqgs function contains four right-hand-side terms that
must capture all possible dependencies of the final McCormick tuple on the dependent
variables’ domains.

3.2. Source code generation

By defining and applying the McCormick rules as single-line code expressions, the
deepest nodes of the expanded (and then edge-contracted) computational graph are
already in a form that, if written out, could be interpreted by Julia as source code
expressions that are the McCormick tuples of the original function. For example, if
the right-hand sides of the four Equations output by shrink_eqs were pasted into a
separate Julia file, with McCormick tuples of the base variables assigned numerical
values, the pasted expressions would return evaluations of the McCormick tuple of the
original mathematical expression. However, by remaining within the Symbolics.jl
algebra system throughout the application of McCormick-based relaxation rules, SCMC
can further automate the step of interpreting the source code expressions and substi-
tuting in numerical values through the use of Symbolics.build function.

When a symbolic expression is passed to Symbolics.build _function, it generates

12

Listing 4 A simplified and truncated version of the transform rule for the multiplication of two symbolic
variables, x and y. The apply_transform function automatically extends x and y into their McCormick tuples
and then applies the appropriate transform_rule with those tuples as inputs, such as this version of the
function for multiplication. This transform_rule function returns Equations where the left-hand sides (first
argument) are the symbolic variables corresponding to the convex and concave relaxations of the product, and
the right-hand sides (second argument) are the symbolic expressions of the applied McCormick rule.

1 function transform_rule(::McCormickTransform, ::typeof(*), zL, zU, zcv, zcc,
2 xL, xU, xcv, xcc, yL, yU, ycv, ycc)
3 rcv = Equation(zcv,

4 ifelse(xL >= 0.0,

5 ifelse(yL >= 0.0, max(-xUxyU + xUxycv + xcvx*yU,

6 -xL*xyL + xL*ycv + xcvxyL),

7 ifelse(yU <= 0.0, -min(xUxyU - xUxycv - xccx*yU,

8 xL*yL - xL*ycv - xcc*yL),

9 max (-xUxyU + xUxycv + xcvx*yU,

0 -xL*yL + xL*ycv + xcc*xyL))),

1 ifelse(xU <= 0.0,

12 ifelse(yL >= 0.0, -min(xL*yL - xL*ycc - xcvxyL,

13 xU*xyU - xU*xycc - xcv*yU),

4 ifelse(yU <= 0.0, max(-xL*xyL + xL*ycc + xccx*yL,
15 -xU*xyU + xU*xycc + xccxyU),
16 -min (xL*yL - xL*ycc - xccx*yL,

7 xU*xyU - xUxycc - xcv*yU))),

18 ifelse(yL >= 0.0, max(-xUxyU + xUxycv + xcvxyU,

19 -xL*yL + xL*ycc + xcvx*yL),

R0 ifelse(yU <= 0.0, -min(xL*yL - xL*ycc - xcc*yL,
R1 xU*xyU - xU*xycv - xcc*yU),
R2 max (-xU*xyU + xUxycv + xcvxyU,

p3 -xL*yL + xL*ycc + xcc*yL)))))

R4 []

code for a numeric function that allows the substitution of numerical input values in
place of the BasicSymbolic{Real}-typed variables. build function is used in Line
5 of Listing 1, where the third element of the vector output from shrink eqs (i.e.,
the term representing the convex relaxation of the original expression) is passed as
an argument, along with a sorted list of BasicSymbolic{Real}-typed variables used
in the relaxation, generated in Line 4 using the SourceCodeMcCormick.pull vars
function. The code output from build_function is then wrapped in an @eval state-
ment to compile the code into a callable Julia function. Although not utilized by
SCMC, build function is also capable of building functions compatible with other
languages such as C, Stan, and MATLAB [19]. This function, and the ordered list
of BasicSymbolic{Real}-typed variables to use as a reference, are the outputs of
the convex_evaluator function in Listing 1. An additional user-facing function,
all_evaluators, returns four functions representing the elements of the McCormick
tuple as well as the ordered variable list. In sum, because the McCormick rules were ap-
plied within the Symbolics. jl algebra system, we are allowed to use build_function
to construct static evaluation functions that return inclusion monotonic interval exten-
sions and convex and concave relaxation values of the original function at respective
input values.

One important distinction between using build_function and simply pasting the
top-level node expressions into a separate file is the fate of the ifelse function. Al-
though this function is useful for remaining in the Symbolics. jl algebra system, if
used as-is, the resulting code will perform very poorly. The ifelse function works
by evaluating both conditional paths and then returning the appropriate result based
on the conditional statement. This operation would waste significant computing time,

13

particularly because the nature of McCormick-based relaxations means that there
would be many potential conditional branches. The build _function utility, however,
internally substitutes ifelse with normal if-else control flow, which only evaluates the
branch corresponding to the conditionally selected outcome. This type of substitution
does not occur for functions such as min or max, for which both arguments must be
evaluated and compared to return the correct result.

The distinction between ifelse and min or max can be seen more clearly by refer-
ring again to Listing 4. By Proposition 2.10, the relaxations of a product are comprised
of min/max functions for the calculations of both intermediate terms and the relax-
ations themselves. If these rules were implemented using only min and max, every
multiplication operation in the intermediate terms would need to be evaluated prior
to performing the relaxation evaluations. Instead, we recognize that the decisions in
the intermediate functions can be simplified to checks on the bounds of g; and go.
For example, for aq, since g{’(z) < ¢{°(z) by definition, the correct output can be
ascertained by checking if gZ > 0. In this case, replacing min with ifelse eliminates
the need to perform both multiplication operations of g ¢{’(z) and g& ¢¢°(z), and also
eliminates the need to evaluate a relaxation of g; that is not ultimately chosen, which
may be expensive if the expression is deeply nested. A similar substitution of min/max
for ifelse cannot easily be made for the calculation of gv or ¢° since a simpler
conditional check is not readily available. Thus, the implementation of multiplication
in SCMC, as shown in Listing 4, proceeds by checking the bounds of the factors us-
ing ifelse conditional checks with each branch terminating in a min or max function
with the correct results of the intermediate functions interpolated. It is worth not-
ing that, by this construction, the only code branches required for multiplication are
those that check the signs of the bounds of the factors—min and max do not result
in branches in the code since both arguments are always evaluated to determine the
output, regardless of the result.

It is also important to address the complexity of these source-code-generated func-
tions. The aim of SCMC is to create single compiled functions that produce McCormick
relaxations on any interval domain, and, by design, the mathematical structure of
McCormick relaxations depends on the domain. Therefore, any function that tries to
encapsulate all possible domains will necessarily have many different potential calcula-
tions to perform, separated in SCMC-generated functions by if-else statements. Table
1 shows the number of conditional branches contained in convex relaxations for a set of
common mathematical expressions. There are more branches than might be expected
from a naive implementation of the rules in, e.g., Definition 2.10 due to an added
intersection between relaxations and the inclusion monotonic interval extensions. This
operation is realized in [39, Def. 9, Step 6] and referred to as the cut operation, which is
formalized in Ye and Scott [61, Def. 11]. Due to how SCMC composes McCormick-based
relaxations together, the total number of conditional branches grows rapidly, even for
visually simple expressions. Although the compiled versions of these functions return
evaluations quickly (see Subsection 3.4), combining more than a few variables together,
such as for multiplication or division, results in lengthy expressions that can consume
significant memory resources of the computing system during compilation. If expres-
sions that are too complicated are passed through SCMC, it may cause Julia to stall in
the function creation step. For this reason, a warning system is implemented in SCMC
that attempts to determine a priori whether an expression will be too long to handle
in a reasonable time frame. If so, SCMC will abort the calculation and inform the user.

14

Table 1. The total numbers of conditional
branches that are required to express a con-
vex relaxation equation using the SCT approach
are reported for commonly encountered multi-
term/multi-factor equation forms (e.g, sums and
products). Cases involving summations exhibit a
number of conditional branches that are inde-
pendent of the number of terms. Cases involving
products (and divisions) exhibit a combinatorial
dependence of the number of conditional branches
on the number of factors in the operation. Dashes
in the table indicate expressions that were too
long to evaluate.

Equation Cardinality of Terms/Factors
Form 2 3 4 5
Sw; 0 0 0 0

exp(>_ z;) 6 6 6 6

DL 6 6 6 6

z; 16 736 20,608
exp([Tzi) | 262 10,390 281,014 —

(T2 310 11,206 294,118 —
o1 /([xi) | 314 32,426 321,578 —

3.3. Utilities

In this section, details are provided on how to use two main SCMC utilities to evaluate
the bounds and relaxations of mathematical expressions of interest: convex_evaluator
and all _evaluators.

The SCMC function convex_evaluator returns a source-code-generated function that
provides evaluations of convex relaxations of the mathematical expression of interest.
This utility is designed for situations where only convex relaxations of an expres-
sion are desired, which may be the case with relatively simple constraints or an ob-
jective function in an optimization problem. Listing 5 provides an example of how
convex_evaluator can be used to generate an evaluator function, as well as how the
generated function can be used. Specifically, the generated function takes numerical
values corresponding to the McCormick tuples of the dependent variables, grouped
by tuple and sorted alphabetically according to the var_order output, and returns
a convex relaxation of the original expression on the desired domain, evaluated at
the desired point in that domain. Similarly, the generated function can be broadcast
over vectors of numerical values to return evaluations of a convex relaxation of the
original expression at multiple locations, with no requirement that the domains of the
dependent variables be similar for different elements of the input vectors.

The function all_evaluators returns four functions corresponding to the Mc-
Cormick tuple of the input expression, i.e. a convex relaxation, a concave relaxation,
and the lower and upper bounds of an inclusion monotonic interval extension. Having
access to all elements of the McCormick tuple may be useful for analysis purposes, and
when dealing with cumulative mappings such as when the original expression is too
complicated to handle in a single convex_evaluator call due to memory limitations.
Listing 6 shows an example of how all_evaluators can be used to calculate relax-
ations for a complicated expression that could not otherwise be handled in one step.
This approach exploits the notion that, when a computational graph is contracted, we
are applying the concepts of composite relaxations (Def. 2.6) and cumulative mappings
(Def. 2.5). Namely, observe that all nodes with index k > n (i.e., factors) only rely
on the McCormick tuples corresponding to the connected nodes immediately prior in
the graph. For example, in Figure 1, the source nodes correspond to factors v; and vo,

15

Listing 5 An example is provided to demonstrate how the convex_evaluator function can be used to obtain
convex relaxations of a desired expression. The variables in the var_order vector, with the McCormick tuples
sorted alphabetically, are shown in the order in which they should be passed into the evaluator function. Note
that the created expr_cv_eval function may also be broadcast over vectors of values to obtain relaxations of
multiple points simultaneously.

1 using SourceCodeMcCormick , Symbolics

2 @variables x, y

3 expr = exp(x/y) - (xxy~2)/(y+1)

4 expr_cv_eval, var_order = convex_evaluator(expr)
5 xcv, xcc, xlo, xhi 1.0, 1.0, 0.5, 3.0

6 ycv, ycc, ylo, yhi 0.7, 0.7, 0.1, 2.0

julia> @show var_order;
var_order = Num[x_cv, x_cc, x_lo, x_hi, y_cv, y_cc, y_lo, y_hi]

julia> convex_relaxation = expr_cv_eval(xcv, xcc, xlo, xhi, ycv, ycc, ylo, yhi)
0.22836802303235837

which were defined to be the independent (base) variables. However, for more compli-
cated expressions, v; and vy could instead represent cumulative mappings, with their
corresponding relaxations in the McCormick tuple calculated as composite relaxations.
Although the process shown in Listing 6 currently requires user-defined functions, fu-
ture work will explore the automation of this step so that complicated expressions
can be passed seamlessly to SCMC without any external combination steps such as
described.

3.4. GPU compatibility

A key design objective of SCMC was compatibility with GPGPU. This was a goal pri-
marily due to the potential for substantial speed benefits if the software can exploit the
massive parallelization of GPUs, but also because a successful implementation would
allow the speed of the associated global optimization algorithm to scale based on
available hardware resources rather than CPU clock speed. An example is presented
in Listing 7 to illustrate how the generated SCMC functions can be used to perform
evaluations of relaxations on a GPU. Thanks to the development of CUDA. j1 by Be-
sard et al. [5] (a Julia wrapper for the CUDA language [27] for GPGPU on NVIDIA
GPUs), it is simple to accelerate these functions by broadcasting them over CUDA ar-
rays instead of standard arrays. SCMC functions are designed to only employ functions
internally that are compatible with GPGPU, and thus no additional considerations
are required in terms of problem formulation or use of SCMC function generators.
Benchmarking results are presented in Table 2 for convex evaluator functions cre-
ated for a set of commonly encountered multi-term equation forms. Given that the
intent of SCMC is to make use of massive parallelization, the benchmark times in this
table represent the time to calculate one million relaxation values for randomly se-
lected points from the variable domain of X = [0.9,1.1]". Three times are shown for
each cell, representing the time to perform the calculations using the multiple dispatch
approach of McCormick.jl, the time using a SCMC-generated function using one core
of an Intel Xeon W-2195 CPU (2.3 GHz/4.3 GHz base/turbo), and the time using
a SCMC-generated function using an NVIDIA Quadro GV100 GPU. Due to memory
limitations, evaluator functions were only generated for expressions with fewer than
10° conditional branches (see Table 1). It should also be noted that the McCormick. j1

16

Listing 6 An example of how an expression that is too complicated for SCMC to handle in a single function
evaluation can be separated into intermediate expressions and recombined with the use of the all_evaluators
function in user-defined code. Arbitrarily complicated expressions can be handled in this manner, exploiting
the notions of composite relaxations (Def. 2.6) and cumulative mappings (Def. 2.5).

1 # Expression: f = (x*y*z - 3*x(xxy) + 4x(z/y)) / (x72 + y~2 + z72)

2 using SourceCodeMcCormick, Symbolics

3

4 Qvariables x, y, z, templ, temp2

5

6 num_cv, num_cc, num_lo, num_hi, _ = all_evaluators(x*y*z - 3*x(x*xy) + 4x(z/y))
7 den_cv, den_cc, den_lo, den_hi, _ = all_evaluators(x”"2 + y~2 + z72)

8 f_cv, _ = convex_evaluator (templ/temp2)

9

10 function div_cv(xcv, xcc, xlo, xhi, ycv, ycc, ylo, yhi, zcv, zcc, zlo, zhi)
L1 input = [xcv, xcc, xlo, xhi, ycv, ycc, ylo, yhi, zcv, zcc, zlo, zhil
12 templ_cv = num_cv.(input...)

13 templ_cc = num_cc.(input...)

14 templ_lo = num_lo.(input...)

15 templ_hi = num_hi.(input...)

16 temp2_cv = den_cv.(input...)

7 temp2_cc = den_cc.(input...)

18 temp2_lo = den_lo.(input...)

9 temp2_hi den_hi. (input...)

R0 division_cv = f_cv.(templ_cv, templ_cc, templ_lo, tempi_hi,

21 temp2_cv, temp2_cc, temp2_lo, temp2_hi)

22 return division_cv

23 end

Listing 7 An example of how relaxation evaluator functions can be used with CUDA arrays to calculate
relaxations on a GPU. In this example, the domain of z is left unchanged for all points for simplicity, but
this is not a requirement. Points on any domain may be passed within the same function evaluation, all of
which will be evaluated in parallel. Note also that double-precision floating-point numbers must be specified,
as CUDA arrays will default to single-precision floating-point values.

1 using SourceCodeMcCormick , Symbolics, CUDA

2 @variables x

3 expr = (x-0.5) "2+x

4 f_cv, order = convex_evaluator (expr)

5

6 xcv_GPU = CUDA.rand(Float64, 1000000)

7 xcc_GPU = copy(xcv_GPU)

8 x10o_GPU = CUDA.zeros(Float64, 1000000)

9 xhi_GPU = CUDA.ones(Float64, 1000000)

1K0] convex_relaxations = f_cv.(xcv_GPU, xcc_GPU, xlo_GPU, xhi_GPU)

17

method, by using the MC type and multiple dispatch, simultaneously calculates the fol-
lowing for the desired expression: convex and concave relaxations, inclusion monotonic
interval extensions, and corresponding subgradients. Notably, the SCMC-generated func-
tions evaluated using a CPU are considerably faster than the McCormick. j1 approach
in all cases, by a factor of 1.1-25.4x. Using a GPU, however, the SCMC functions are
consistently nearly three orders of magnitude faster than the McCormick. j1 approach.
This result showcases the speed that can be gained by utilizing a parallel computing
approach.

Table 2. The total times to evaluate convex relaxations of the equation of the listed
form with one million randomly selected points in the domain X = [0.9,1.1]" are
tabulated for three different methods: using the McCormick. j1 approach (MC), the
SCMC approach operating on one core of an Intel Xeon W-2195 CPU (SCMC (CPU)),
and the SCMC approach on an NVIDIA Quadro GV100 GPU (SCMC (GPU)). The
SCMC method, when performed on the CPU, calculates relaxations considerably faster
than the McCormick.jl method in every case. When the SCMC approach is paired
with a GPU, the evaluation times are nearly three orders of magnitude shorter
than the McCormick.jl method. Note that the McCormick.jl method, by design,
is also computing a concave relaxation, inclusion monotonic interval extension, and
subgradients of the relaxations.

Equation McCormick Cardinality of Terms/Factors
Form Style Unit 2 3 4 5
MC ms 15.923 28.457 42.387 61.937
S SCMC (CPU) ms 0.851 1.292 1.861 2.434
SCMC (GPU) ms 0.049 0.063 0.076 0.091
MC ms 79.753 92.130 99.210 117.020

exp(S ;) | SCMC (CPU) ms 6.817 9.528 12.755 30.842
SCMC (GPU) ms 0.082 0.113 0.142 0.171

MC ms _ 53.276 _ 67.735 _ 76.703 _ 98.066
(3 ;)2 SCMC (CPU) ms 9.941 14.412 22479 28.354
SCMC (GPU) ms 0.109 0.152 0.194 0.236
MC ms 33.164 65.407 93.542 127.082
1= SCMC (CPU) ms 7.666 21.990 77.212 —
SCMC (GPU) ms 0.110 0.154 0.211 —

MC ms 97.459 132.791 161.305 201.233
exp([]z:) SCMC (CPU) ms 25.075 90.600 — —
SCMC (GPU) ms 0.113 0209 — —

MC ms 77450 109.112 141.369 179.004
(TTx4)? SCMC (CPU) ms 26.583 96.794 — —
SCMC (GPU) ms 0.113 0.216 — —

MC ms 83.475 121.933 154.147 198.200

z1/([Ts x;) | SCMC (CPU) ms 9.837 41.361 — —
SCMC (GPU) ms 0113 0167 — .

Designing an algorithm to be GPU compatible requires acknowledgment of the lim-
itations of GPU architectures. While CPUs are built with a small number of fully
independent cores that can execute independent tasks simultaneously, GPUs are de-
signed with a much larger number of cores that, in general, operate in parallel by
following a single instruction that is applied to multiple data points (SIMD). For tasks
where the same instructions are executed a large number of times, SIMD operation
can be significantly faster than operation on x86 hardware, by virtue of the greater
number of cores in typical GPUs as compared to typical CPUs. This concept is illus-
trated in Figure 2 for the evaluation of a convex relaxation f¢ : X — R at several
different points on a single core of a CPU versus a GPU. However, if the instructions
differ depending on the data, there can be significant time penalties that impact the
overall computation time.

Consider, for example, GPUs produced by NVIDIA. To execute a GPU function—
called a kernel—on a collection of data points, the task will be handled by a collection
of threads, which can be thought of as individual execution units. NVIDIA GPUs issue

18

CPU GPU
X1 Y1 X1 o fU() W
X2 X‘ / Y2 Xg [fU () Yo
RN o t
X3 t4+2 cv(,) Y3 X3 chv(.)ﬂ Y3
L&
X32 Y32 X32 |- £V (V) > Y32

Figure 2. This figure illustrates a high-level simplification of the computing differences between CPU and
GPU architectures. A convex relaxation f<¥ : X — R is evaluated at 32 points with reference to an instruction
set sequence time index t. A CPU executes the instruction sets on the data points sequentially (ignoring
multithreading). In contrast, the architecture of the GPU enables instruction sets to be executed on many data
points simultaneously. 32 points x; € X and function evaluations are illustrated to coincide with a single warp
on the GPU.

instructions to warps, which are groups of 32 threads, as illustrated in Figure 2. In the
ideal case, where the same instruction applies to every data point, each thread in a warp
will operate in parallel to compute the total of 32 results. However, if the instructions
differ between threads in a warp—a phenomenon called warp divergence—the GPU
will be unable to issue the different instructions to different threads simultaneously.
One way GPUs can handle warp divergence is by first activating only those threads in
the warp that will execute one set of instructions, then activating the threads that will
execute an alternate set of instructions, and so on. This is inherently slower than the
ideal case because the massive parallelization made possible by the GPU architecture
is not being used to the fullest extent. In the worst case, where each thread in a warp
executes a different instruction, the total calculation time may increase by a factor of
approximately 32. On the other hand, if there would be significant warp divergence but
the data points can be sorted prior to calculation to minimize the number of unique
instructions per warp, the computation time can be greatly reduced.

This architecture limitation is critical to understand and account for when using
SCMC, since the relaxation evaluator functions are composed of deeply nested if-else
statements. Particularly, if worst-case GPU performance comes from warp divergence
resulting in 32 unique instructions per warp, and the SCMC functions have hundreds
to tens of thousands of unique branches, intuitively these functions should practically
always result in very poor computational performance. Fortunately, there are three
important factors that work to the benefit of SCMC:

(1) The number of conditional branches is large because every possible control-flow
case must be considered. However, conditional branches are not equally likely
to be encountered in practice. For example, 57 paths from the 314 conditional
branches in the expression representing a convex relaxation of x/y stem from
checks that the division operation is defined on the given domain. If the user is
working on variable domains where division always returns a real value, these

19

conditional branches will never be encountered.

(2) The substitution process of SCMC results in nested ifelse statements but does
not currently check for conflicting conditional statements within the tree. Con-
sequently, many conditional branches may be unreachable.

(3) Functions such as z/y fall victim to warp divergence and performance degrada-
tion in the case where threads in the same warp try to access different conditional
branches. For McCormick relaxations, different conditional branches might be
accessed when inputs or intermediate values switch from positive to negative, or
vice versa. In a typical use case of B&B, which is the expected application space
of SCMC, the SCT-generated functions will likely be used to evaluate multiple
points within individual B&B nodes, which in most cases represent compara-
tively small regions of the overall search space. Within a single node, it is unlikely
that multiple conditional branches will need to be accessed, since the points to
evaluate will be numerically similar. If points from multiple nodes are to be
evaluated and the nodes are far from one another, it is possible that different
conditional branches will need to be accessed for points associated with the two
nodes, but this is far from the worst-case warp divergence scenario of 32 unique
branch paths. This point is further helped by the problem scale. As detailed in
Subsection 3.5, the current application method requires the evaluation of 2n + 1
points per node, where n is the problem dimensionality. For problems involving
higher dimensions, larger numbers of numerically similar points will be grouped
together, which will further reduce the incidence of warp divergence.

In summary, although these functions have a large number of conditional branches, the
existence of these conditional branches is not necessarily problematic. The key factor
is warp divergence, which is likely to be low in practice within typical optimization
problems that will be solved using B&B.

One critical aspect to address is how the speed of the evaluator functions is affected
by warp divergence and how the functions can be expected to perform in a spatial
B&B algorithm. To address the large potential impact of warp divergence, the speeds
of SCMC convex evaluator functions for several forms of mathematical expressions are
presented in Table 3 for a set of potential computational scenarios. These range from
the most ideal scenario, in which all the input points and domains are numerically
similar—such as the case in Table 2—to the worst-case scenario, where the input
points and domains are numerically dissimilar and randomized. There are additional
intermediate cases meant to represent how these functions may be expected to behave
in a B&B implementation. Notably, in optimization problems where the branching
variables are constrained to numerically similar values. For example, positive values
over a range that is not expected to change the sign of the resulting calculation, the
SCMC functions should operate at speeds close to the ideal case, since there is expected
to be low warp divergence. This is also true for multiplication, which is implemented
to only have warp divergence when the signs of the operands change (see discussion
in Section 3.2). In more complicated cases, such as optimization problems where the
variables are all close to zero and can take on positive or negative values, the SCMC
functions perform slower than the ideal case, but still substantially faster than the
worst case. Generally, these results indicate that although warp divergence is a critical
factor affecting performance, the degree of warp divergence is likely to be low in
typical problems, and thus the generated functions should perform similarly to their
ideal speeds in practice.

20

Table 3. The total times to evaluate convex relaxations of the equation of the
listed form with x € X € IR? are tabulated. These timings are for 350k evaluation
points—equivalent to 50k B&B nodes using the blackbox sampling method of Song
et al. [43]—using SCMC source-code-generated functions on a GV100 GPU. The Ideal
Case represents a potentially unrealistic scenario with numerically similar inputs,
where all evaluation points are randomly selected from a small, identical domain of
X = [0.9,1.1]3. The Typical B&B Case represents a commonly encountered B&B
scenario in which we evaluate 7 points per node and the 50k nodes are randomly
selected non-overlapping subdomains of X = [0,3]3. The Complicated B&B Case
represents a B&B scenario where we evaluate 7 points per node and the 50k nodes
are randomly selected non-overlapping subdomains of X = [~1.5,1.5] (i.e., span-
ning negative and positive values). In the two B&B cases, the order of the nodes is
randomized to emulate a more realistic B&B situation. The Worst Case represents
a situation where we evaluate 1 point per node and the 350k nodes are randomly
selected (possibly overlapping) subdomains of X = [—1.5,1.5]2. In the complicated
B&B and worst case scenarios, the exp(ITz;), ([]z;)2, and division formulations
exhibit significant time penalties from warp divergence.

Equation Typical Complicated
Form Unit Ideal Case B&B Case B&B Case Worst Case
S ms 0.029 0.029 0.029 0.029
exp(>_ ;) ms 0.047 0.047 0.047 0.047
)2 ms 0.060 0.060 0.060 0.060
INED ms 0.063 0.063 0.239 0.713
exp([Tzi) ms 0.093 0.094 3.801 12.665
(IT=:)? ms 0.097 0.099 3.696 15.776
x1 /([T i) ms 0.072 0.090 1.823 2.078

3.5. Global optimization with SourceCodeMcCormick.jl

So far, we have focused on the details of how the SCMC approach can be used to quickly
obtain a large number of pointwise evaluations of convex relaxations of mathematical
expressions. In this section, we develop a novel parallelized B&B framework that can
exploit these fast pointwise evaluations of relaxations in parallel. Since this parallel
pointwise evaluation approach does not align naturally with how global optimizers
like EAGO normally function, careful considerations are required to effectively exploit
this approach. Specifically, EAGO and global optimizers like EAGO most commonly
assume that only one B&B node is evaluated at a time. Since the SCMC approach
makes the best use of parallelization when a large number of points are evaluated,
and because it is capable of evaluating different variable domains (nodes) simulta-
neously, a B&B method that uses SCMC should have the capability to solve lower-
and upper-bounding problems for multiple B&B nodes in parallel rather than in se-
ries. Additionally, modern global optimization routines that utilize McCormick-based
relaxations also typically use subgradients of their corresponding convex/concave re-
laxations for domain reduction and accelerating lower-bounding problems, which are
currently not computed by SCMC. Although the inclusion of subgradients could be
beneficial, solvers like EAGO typically use them to generate subtangent hyperplanes
used for LP lower-bounding problems, which are then sent to a separate LP solver
to obtain a lower bound. If subgradients are to be incorporated into SCMC, additional
developments are necessary to obtain batched solutions to large numbers of LPs on a
GPU so that this process does not become the bottleneck for parallelization. This is
a future area of research.

Instead, for the choice of lower-bounding method, recent work of Song et al. [43]
provided a method for calculating a mathematically rigorous lower bound of a convex
function via pointwise evaluations. This method starts by considering an interval X €
IR"™ and a convex function f : X — R. We define the midpoint w(® of X, and for

21

each index i € {1,...,n}, we define two vectors w(F) | as follows:
(0) L L U

w = §(x +x7),

@i

2

w@E) — w0 L (¥ — xL)e(i),

2

with e as the i-th unit coordinate vector in R” and with a predetermined step length

€ (0,1]. We continue by obtaining the values of the convex function at each of these
points (i.e., yo := f(w(®) and yi; := f(wF))) and, using the evaluations at these
points, we calculate a scalar lower bound as:

fLBD = yo — Zn: (max(y+i»yi) - yo) '

Y
i=1 v

The full details of the proof may be found in Song et al. [43].

This method is especially convenient for the SCMC approach because a known num-
ber of pointwise evaluations (2n + 1) is required regardless of the complexity of the
underlying convex function. Furthermore, since the locations of these points can be
determined a priori based on the domain of a B&B node, it is simple to determine
which points the convex relaxations must be evaluated at for multiple nodes before
any calculations are completed. In effect, by applying this method, the points and
domains that will need to be evaluated can be gathered prior to calculation, and then
all the pointwise evaluations that are needed can be calculated in a single step for an
arbitrary number of nodes, limited mainly by VRAM capacity.

To address the new parallel node evaluation paradigm, an extension of the EAGO
solver was created to handle multiple nodes simultaneously. Pseudocode showing the
overall algorithm is provided by Algorithm 2, which is also illustrated in Figure 3. An
important distinction between this algorithm and that of the default EAGO solver
is how upper-bounding problems are handled. In the default EAGO B&B method,
the upper-bounding problem is solved for every node shallower in the tree than a
predetermined threshold, and then it is solved depending on a depth-based probability
distribution for deeper nodes. This approach works well when nodes are individually
evaluated, as the number of nodes after several iterations is still low, on the order of
10%. With this small number of nodes, solvers such as IPOPT [53], which may take
10' — 102 ms to run, are only called a small number of times. In Algorithm 2, by the
time the first iteration begins, the problem domain has already been partitioned into
ne = ¢ subdomains/nodes by the preprocessing step. Depending on the machine and
user settings, ¢ may be large: preliminary testing of some of the numerical examples
in Section 4 found that ¢ = 2'3 = 8192 worked well. Although IPOPT is a highly
performant solver, running it on all n, = ¢ nodes would be detrimental to the speed
of the overall algorithm, and choosing a subset of the n, nodes on which to use IPOPT
may be no better than random guessing. For this reason, IPOPT is only used once, at
the root node before the initial partitioning step, to obtain a reasonable starting upper
bound for global optimization. Instead, for each iteration of the main algorithm, we
note that pointwise evaluations of the objective function can indeed function as valid
upper bounds. The main power of SCMC lies in its speed of performing parallelized
pointwise evaluations, so the addition of one point per node to function as a valid
upper bound is computationally inexpensive.

Although the lower bounds generated for each individual node could be made tighter

22

Algorithm 2 Parallel-Evaluation B&B (ParBB)

(1) Solve the original program to local optimality at the root node on the domain
X € IR" using IPOPT (or some other NLP solver)
(2) Partition X into n, := g similar-sized intervals X such that X = UL X®),
and push them to the main B&B stack
(3) While the problem is not converged (or the stack is nonempty):
(a) Perform fathoming (pop and delete d nodes from the stack if their lower
bounds preclude them from containing a problem solution). n, :=n, — d
(b) Pop the n¥"? := min{n,, ¢} nodes with the lowest lower bounds in the main
B&B stack to the parallel evaluation substack
(¢) Perform in parallel, for each node in the substack:
(i) Calculate the values of the 2n+1 points to be evaluated and add them
to the evaluation queue
(ii) Calculate the node’s midpoint and add it to the evaluation queue; eval-
uating the objective function at this point returns an upper bound
(iii) Obtain convex relaxation values and a pointwise evaluation of the ob-
jective function by passing the evaluation queue to the SCMC convex
evaluator for the objective function
(iv) Apply the blackbox sampling method to calculate the node lower bound
based on the 2n + 1 evaluation points
(v) Apply the lower bound result to the node in the substack
(vi) Apply the upper bound result to the node in the substack
(d) Branch each node in the substack and push all new partitions to the main
B&B stack. ng := ng + nf,“b
(e) Check for problem convergence

23

| Local | { Partition X _________________
i Solve | into ¢ Nodes | / ~
\ ! / i Generate |
—>§ Evaluation i
T < i Points
> C}}eck' N
1 Termination End
‘ ! N A
i — é Evaluate All !
i Fathoming | Points i
! Step R v
| ,,
i Push min{n,,q} | i ass Variablei_ U ExtrBact d
I\Nodes to Substackll i Domains ! __?_E)ff__ __(_)_1_12__?,
. . \
O y | Distribute | {5 N A
i Branch All !|_ | i _ | Pass Lower/ ! Calculate
! i] —
i Nodes | | Lower/Upper !~ 1 Upper Bounds Lower Bounds
N / iBounds to Nodes; ___ " R N /

\. ’

Figure 3. A block flow diagram representation of the parallel B&B algorithm (Algorithm 2), indicating the
hardware on which the algorithm steps are executed. Operations corresponding to node storage and manage-
ment are kept on the CPU, whereas numerical operations are offloaded to the GPU. Steps involving the transfer
of information between the CPU and GPU are located at the intersection of the CPU and GPU regions.

by utilizing subgradient information, this is compensated for by the much greater node
throughput and the consequently smaller subdomains that these calculations are being
performed on for each iteration of the algorithm. One important consequence of this
algorithm, however, is related to the large number of nodes generated in the main B&B
stack. While the base implementation of B&B would require 10° iterations to reach a
stack size of 10° nodes (without fathoming), with n, = ¢ set to 23, this number of
nodes is reached after just twelve iterations of Algorithm 2. Storing such a large number
of nodes may be highly memory intensive. This issue is exacerbated by the decreased
tightness associated with each node due to the choice of lower-bounding method, which
results in fewer nodes being fathomed than if the same nodes were evaluated using
a tighter method. Consequently, while many more nodes can be processed using this
algorithm than the more typical single-node implementations, the abundant use of
memory quickly becomes a limiting factor in the overall algorithm speed. However, if
subgradient calculations can be incorporated into the SCMC functionality in the future,
this issue may be ameliorated to a large extent.

4. Numerical examples
While the parallel B&B algorithm (ParBB), Algorithm 2, may be applied to a range

of optimization problems, in this section we will explore the application of the new

24

methods and software to the optimization of a machine learning model (Sec. 4.1)
and parameter estimation problems (Sec. 4.2-4.3). The machine learning problem of
Section 4.1 seeks to determine optimal inputs to a trained artificial neural network
(ANN), formulated generally as

min fAN(x)
xeXelR™

: (1)

where fANN represents a scalar output of the ANN that relates to some system perfor-

mance metric. The parameter estimation problems of interest are formulated generally
as:

Ng
*ca : . _ ,,datay2)
p'€arg min ;(yz(p) yi) (2)

The objective function in (2) is the sum of squared error (SSE) between the predictions
of a model of interest y(p) and a set of experimental data y9®?2 where p is the
uncertain parameter vector and ny is the number of experimental data points. In the
following sections, two problems of this form will be used for numerical experiments
to benchmark and demonstrate the use of the proposed approaches.

An important point to note is that the ParBB algorithm is, at the time of writing,
an early-stage implementation to demonstrate the utility of SCMC in a GPU-based de-
terministic global optimization algorithm. ParBB by itself is not yet a mature solver
and lacks bounds tightening techniques and features that are common across exist-
ing solvers, such as constraint propagation, feasibility-based bounds tightening, and
optimization-based bounds tightening, among others. For this reason, in order to show-
case a more direct comparison between how ParBB and the other solvers handle the
following numerical examples, the other solvers (BARON [38], ANTIGONE [31], SCIP
[7,52], and EAGO [59]) will have their pre- and post-processing techniques deactivated,
using the settings presented in Table 4. These versions of the solvers, which rely only
on their branching and bounding routines, are referred to in this section as “vanilla”
versions of these solvers. For each of the examples, reactivating these processes greatly
enhances the ability of the solvers to address the problems. Additionally, to better
demonstrate the differences between subgradient-based methods and subgradient-free
methods, such as what is used in the ParBB algorithm, a version of EAGO is in-
cluded in the examples that uses the same “vanilla” settings as previously described
in addition to the blackbox sampling method of Song et al. [43] as the lower-bounding
method.

All numerical experiments in this work were run on a single thread of an Intel Xeon
W-2195 2.30/4.30 GHz (base/turbo) processor with 64 GB of RAM running a Win-
dows 11 Enterprise 22H2 operating system and an NVIDIA Quadro GV100 GPU with
32 GB of HBM2 VRAM (driver v552.22, CUDA v12.4). Julia v1.10.3 was used in con-
junction with BenchmarkTools. j1 v1.5.0 [10], CUDA. j1 v5.3.3 [5], EAGO. j1 v0.8.1 [59],
JuMP. j1 v1.21.1 [13], McCormick.j1l v0.13.4 [57], SourceCodeMcCormick.jl v0.3.1,
and Symbolics.jl v5.28.0 [19]. Vanilla EAGO is run using GLPK as the lower-
bounding solver, using GLPK.jl v1.2.0 which is a wrapper for GLPK solver v5.0.1
[29]. Each problem was run with a time limit of two hours. For the ParBB algorithm
and lower-bounding method, ¢ was set to 2!3 and a was set to 2 x 107° for each
problem.

25

“vanilla” versions of com-

Table 4. Parameters used to obtain
mon deterministic global optimizers. These versions are meant
to represent B&B approaches that do not make use of pre-
processing or post-processing techniques, relying instead on lower-
and upper-bounding techniques within each B&B node.
Solver Parameters
LBTTDo = 0O
MDo = 0O
NumLoc = 0
OBTTDo = O
PDo = 0
TDo = 0
fbbt_improvement_bound = 0
use_obbt = 0
presolving/maxrounds = 0
propagating/maxrounds = 0
cp-depth = 0
dbbt_depth = 0
fbbt_lp_depth = 0
obbt_depth = 0
cp-depth = 0
dbbt_depth = 0
fbbt_lp_depth = 0
obbt_depth = 0

BARON (Vanilla)

ANTIGONE (Vanilla)

SCIP (Vanilla)

EAGO (Vanilla)

EAGO (Blackbox Sampling)

4.1. Surrogate ANN model

In Smith et al. [42], a surrogate ANN model of bioreactor productivity was constructed
by fitting results from computationally expensive computational fluid dynamics simu-
lations to a small ANN with one hidden layer. The surrogate model was then optimized
to obtain ideal processing conditions for the bioreactor [42]. The objective is given by:

3
2
FANN(x) = by + Z wa,r
—1 1+ exp (—QWETX + blyr>

: 3)

with the weights vectors wy, (for r = 1,2,3) and ws, and biases by, by available in
Smith et al. [42], and x € X = [-1,1]5.

The convergence plot for this problem is shown in Figure 4. The first and most di-
rect comparison to make is between the ParBB algorithm and the blackbox sampling
method used with the EAGO solver. Since neither solver uses pre- or post-processing
techniques, and the same lower-bounding method is used, differences in the conver-
gence profiles between these two methods are only due to the batched node processing
of ParBB and ParBB’s use of GPU hardware. While EAGO with the blackbox sam-
pling method is able to converge in 95 s, ParBB converges in 4.3 s, giving a speedup of
roughly 22x. ParBB and this version of EAGO required 6.6 x 10° and 8.0 x 10° node
evaluations to solve the problem to guaranteed global optimality, respectively. The
discrepancy in nodes is due to differences in when nodes were branched on in batch
versus serial node processing, but since ParBB is able to process nodes in parallel on
faster hardware, the solution was obtained in significantly less time.

In this problem, it is interesting to note that the vanilla and blackbox sampling
versions of EAGO give roughly comparable performance, converging in 64 s and 95
s, respectively. This indicates that, for this problem, the improved lower bounds that
can be obtained by using subgradient information only slightly outweigh the added
computational cost of generating and solving LPs. By parallelizing the blackbox sam-
pling method on a GPU, ParBB is able to achieve considerable performance gains

26

10r

7z 0
¢ 7/
‘1‘ / -
Il :
57
0.95| '
4
//
e
09 ./ //
. S

Ratio of lower to upper bound

0.85|
—— SCMC; ParBB on GPU
--- EAGO (Vanilla)
—-— EAGO (Blackbox Sampling)
------ SCIP (Vanilla)
0.8 . L
10 100

Wall Clock Time [s]

Figure 4. A convergence plot for the surrogate ANN model problem (Sec. 4.1) showing the performance of the
novel ParBB algorithm (solid black) against vanilla versions of EAGO (dashed blue) and SCIP (dotted purple)
and vanilla EAGO using the same lower-bounding routine as ParBB (dash-dotted green). ParBB converges
the fastest in 4.3 s, followed by vanilla SCIP in 22 s, vanilla EAGO in 64 s, and EAGO with the blackbox
sampling method in 95 s. As compared to the blackbox method implemented with EAGO, ParBB is roughly
22x faster, and despite not using subgradients, ParBB converges at least 5x faster than vanilla versions of the
more mature solvers.

over the same method run on a CPU. Since the performance gained from this GPU
parallelization is greater than the switch from subgradient-free to subgradient-based
methods on a CPU, this results in ParBB achieving faster convergence than any of
the vanilla versions of CPU-based solvers.

Comparing ParBB and the vanilla versions of SCIP and EAGO, for this problem,
ParBB is able to reach convergence in only 4.3 s, outperforming the other tested
solvers by more than 5x in terms of solution speed. Vanilla SCIP is the next fastest,
converging in 22 s, followed by Vanilla EAGO, which solves the problem in 64 s.
One curious aspect of these solution profiles is the conspicuous early plateau near
88% convergence identified by vanilla EAGO and EAGO with the blackbox sampling
method, which is also present, but at a lower convergence, for ParBB. This plateau
corresponds with finding a global solution and a lower bound that corresponds to that
of an inclusion monotonic interval extension of the objective function on the domain.
For the two versions of EAGO, since their solution methods start at the root node, an
inclusion monotonic interval extension provides the first lower bound that is obtained,
and improvements are only made once smaller domains with tighter relaxations are
reached through branching. ParBB, on the other hand, starts by partitioning the root
node into ¢ subdomains, and then applies the blackbox sampling method, which is not
guaranteed to provide results tighter than interval extensions. That is, across these
subdomains, there are regions where applying the blackbox sampling method to the
convex relaxation results in a lower bound that is lower than what can be obtained by
applying interval arithmetic to the root node. Consequently, ParBB effectively starts
at a lower plateau than what is found by both versions of EAGO, and only after

27

Table 5. The fitted pa-
rameters for (4), as obtained
by Alvarez et al. [1], are
tabulated for validation with
the vapor-liquid equilibrium
example (Sec. 4.2).

Parameter Value
ao 8.7369
a1 27.0375
as -21.4172
bo -2432.1378
by -6955.3785
bo 4525.9568

eliminating these regions by further branching is ParBB able to improve the global
lower bound. Still, due to its ability to use GPU hardware, ParBB is able to overcome
these differences to give overall faster performance than the vanilla versions of more
mature solvers.

Finally, it should be noted that vanilla versions of ANTIGONE and BARON were
unable to make progress on this problem within 2 hours, likely due to the curse of
dimensionality as it applies to the higher dimensional space that these solvers operate
in using the auxiliary variable method. With pre- and post-processing routines reacti-
vated, ANTIGONE and BARON are able to solve this problem during preprocessing
or at the root node in 0.13 s and 0.13 s, respectively.

4.2. Vapor pressure parameter estimation

The second problem of interest comes from Alvarez et al. [1], in which the authors
were studying the vapor-liquid equilibria of electrolyte solutions for triple-effect ab-
sorption heat pump systems. Through measurements of the vapor pressure over a
range of alkaline nitrate salt concentrations and temperatures, the authors were able
to compare the performances of the proposed salt mass fractions for operation in a
high-temperature absorption cycle. In this work, we reexamine the experimental va-
por pressure data from Alvarez et al. [1] to validate the parameters shown in Table 5,
which were obtained by the authors to fit the polynomial expression:

2 .
2 > biw'
1Og(7Tca1C) _ Zaiwi + z:OT ’ (4)
=0

where 7 is the vapor pressure in kPa, w is the total mass fraction of salts in the
solution, and 7' is the temperature in K.

For this problem, we use a scaled least-squares method for parameter fitting with
the objective function given as:

N 7.‘_calc X _W?XP 2
f(p)zz[(Cb) =)| (5)

T
=1 ?

where p = (ag,ay,as,by,bi,by) is the parameter vector, 7¢%¢ is the vapor pressure
calculated by (4) at a given condition x; = (w;,T;), m; © is the experimental vapor
pressure data provided by Alvarez et al. [1, Tab. 1] corresponding to the condition

28

X;, and N is the number of data points used for fitting, which is 50 in this example.
Due to the presence of an exponential term with a complex argument used in the
calculation of the objective function, this optimization problem is nonconvex, and
with six parameters to fit, this problem is challenging for a B&B approach due to the
curse of dimensionality. Bounds tightening techniques are particularly important for
problems such as this with nested equation forms and multiple problem dimensions,
since significant branching is required to obtain nodes that are sufficiently small in
each dimension to provide tight relaxations. Parameter bounds for this problem were
selected to be a box of diameter 0.2, centered around the parameters in Table 5.

10r

= -
- .-“--

o
N
u

0.5

Ratio of lower to upper bound

0.25 =
:' ! —— SCMC; ParBB on GPU
: I --- EAGO (Vvanilla)
. . —-— EAGO (Blackbox Sampling)
[| SCIP (Vanilla)
1 10 100 1000

Wall Clock Time [s]

Figure 5. A convergence plot for the vapor pressure parameter estimation problem (Sec. 4.2) showing the
performance of the novel ParBB algorithm (solid black) against vanilla versions of EAGO (dashed blue) and
SCIP (dotted purple) and vanilla EAGO using the same lower-bounding routine as ParBB (dash-dotted green).
While vanilla SCIP and EAGO are able to solve this problem within several hundred seconds due to their tighter
relaxation techniques, the ParBB algorithm is unable to solve the problem due to the clustering problem,
reaching a final convergence of 97.2% after 7200 s of runtime. The direct-comparison algorithm, EAGO with
the blackbox sampling lower-bounding method, is also unable to solve the problem, reaching a final convergence
of 86.5% after 7200 s of runtime. This level of convergence is reached by ParBB in 86 s, for a speed improvement

of 84x.

As shown in Figure 5, vanilla implementations of EAGO and SCIP are able to
converge to within the problem tolerance in 74 s and 360 s, respectively, while the
methods that rely on the blackbox sampling method, including ParBB, are unable to
converge within 7200 s. Notably, the convergence profile of ParBB shows the apparent
behavior of the clustering problem [12, 54], in which an undesirably large number of
nodes in the vicinity of a global minimizer must be visited before a solution can be
obtained. This problem results from the behavior of objective functions near their
global minimizers [12], with the number of nodes having exponential dependence on
the problem dimensionality [35]. In particular, and as observed by Wechsung et al. [54],
improving the tightness of the relaxations—and by extension improving the tightness
of the resulting node lower bounds—is critical to mitigating the clustering problem [54].
While the blackbox sampling method used by ParBB is capable of providing fast lower

29

bounds, the decreased tightness of the technique as compared to subgradient-based
lower-bounding methods makes ParBB more susceptible to the clustering problem
than solvers that utilize subgradients. This is most visible towards the end of the
convergence profile whereby ParBB achieves roughly 90% convergence in 89 s, after
which only marginal progress is made for the remaining 7111 s of the problem runtime.

Comparing ParBB to EAGO with the same blackbox sampling method, EAGO’s
final convergence of 86.5% is reached by ParBB in 86 s, for a direct-comparison per-
formance increase of 84x. Both ParBB and this version of EAGO are outpaced by
the vanilla EAGO solver, which is able to exploit subgradient information to calculate
tighter lower bounds and thereby mitigate the clustering problem. As a comparison to
demonstrate the reduced node requirements due to its tighter lower-bounding method,
vanilla EAGO took roughly 5.1x10% iterations (5.1x10* nodes explored) to reach its
solution, whereas ParBB completed 2.4x10* iterations (2.0x10® nodes explored—over
3 orders of magnitude more than vanilla EAGO) in two hours and only achieved a
convergence of 97.2%.

As in the previous example, vanilla versions of ANTIGONE and BARON were
unable to make notable progress on this problem within two hours, likely due to the
high dimensionality of their auxiliary variable method approaches in addition to their
dependence on domain reduction techniques. With pre- and post-processing techniques
activated, ANTIGONE and BARON are able to solve this problem in under 5 s each
(4.0 s and 3.3 s, respectively).

4.3. Transient absorption kinetics model

The final example of interest, originally described by Taylor [48], concerns the time-
evolving concentrations of several chemical species after an initial laser flash pyrolysis.
The problem consists of the following system of ODEs:

d k k
% =k1xzxy — co,(kay + ksp)ra + %HTD + Ki;l’B — ksa%,
de k3f
7 o, k35T A <K3 + K4) TB,
d:ED k2f
Y —en k — =L 6
a CoskerTa = 3o D, (6)
dry 2
dt - 1sLZTy,
d
% =—kizzzy,

24(0) =2p(0) =2xp(0) =0, zy(0) =04, zz(0) = 140.

Here, x; is the concentration of species j € {A,B,D,Y,Z}, and there are known
constants of T' = 273, Ko = 46 exp (6500/T — 18), K3 = 2K5, k1 = 53, k1s = k1 X
1075, ks = 1.2 x 1073, and cp, = 2 x 1073, The uncertain model parameters are
P = (k:gf,kgf,k4) with kgf S [10, 1200], kigf S [10, 1200], and k4 € [0.001,40}, and
experimental data is given in terms of intensity, which has a known dependency on
concentrations as ¢ = 4 + %x B+ 2%95 D, which originates from the Beer-Lambert
law for relating measured absorbance to concentration with a correction for multiple

30

species [40]. Thus, the objective function is formulated as:
N 2
f(p) = Z <Icalc(xi7p) - Ifxp> 5
i=0

)

where x; = (24,4, 2B, Tp,) represents the relevant discrete-time states at time ¢ at
which the intensity function is evaluated.

This problem was also addressed by Mitsos et al. [32], in which the ODE system was
first discretized using the explicit Euler method to match the times of the 200 experi-
mental data points, and then a McCormick relaxation library was applied to calculate
convex and concave relaxations of the discrete-time state variables on the parameter
domain. These relaxations were propagated forward through all time points to obtain
a relaxation of the objective function. An alternative method of solving this problem
using an implicit Euler discretization was utilized by Stuber et al. [44] and Wilhelm
et al. [58], which was then solved using the global optimization of implicit functions
approach. In this work, we follow the explicit Euler approach of Mitsos et al. [32].
The ODE system in (6) is discretized using 200 time points, and a convex relaxation
of the objective function is obtained by propagating forward McCormick relaxations
through the discrete-time states and comparing the resulting ODE trajectories with
the experimental data.

Figure 6 shows a convergence plot that compares the performance results between
the solvers in Table 4 on this problem. The most apparent aspect of this plot is that
the ParBB algorithm converges faster than all other tested solvers. Although none of
the solvers were able to converge fully within two hours due to the clustering problem,
ParBB reached the highest level of convergence out of any solver, and reached 95%
convergence in 0.88 s. This is 24x as fast as vanilla EAGO (21 s), and roughly 90x as
fast as EAGO with the blackbox sampling method (79 s). Vanilla SCIP was unable
to reach 95% convergence within the two hours of runtime. As another comparison
point, EAGO with the blackbox sampling method eventually reached a convergence of
96.9% after two hours. This level of convergence was reached by ParBB in 61 s, giving
a speedup of roughly 118x. This problem was too large to address using ANTIGONE
or BARON, as the community license limited the number of nonlinear terms in the
problem formulation.

This example represents a particularly strong use case for a parallelized B&B ap-
proach such as ParBB because evaluating the objective function to obtain an upper
bound effectively requires the calculation of a trajectory of the underlying ODE sys-
tem, and obtaining a lower bound requires generating bounds on the set of all possible
trajectories of the ODE system in a given parameter subdomain. These operations are
computationally expensive, which makes them a good target for GPU parallelization.
With ParBB, this parallelization is accomplished by grouping together calculations
for different nodes into batches, and because ParBB uses the bounds on trajectories
to calculate node lower bounds on the GPU, there is no overhead required to transfer
calculation results between the GPU and CPU. This parallelized processing of nodes,
made possible by SCMC and the ParBB algorithm, enable the parallelization of this
and other expensive calculations that may be needed to solve complex deterministic
global optimization problems.

31

101
N S —
e
0.95 =
©
c
=)
o .n
Qo N
“ 0.9 st
g UTTTTTRPPRPPRN
o ot
>
S oss
—
()
=
o
"'6 0.8
o
.%
o —— SCMC; ParBB on GPU
0.75¢ a : --- EAGO (Vanilla)
L K —-— EAGO (Blackbox Sampling)
‘.' ------ SCIP (Vanilla)
0.7 1 0' 1 1 I
1 10 100 1000

Wall Clock Time [s]

Figure 6. A convergence plot for the transient absorption kinetics problem (Sec. 4.3) showing the performance
of the novel ParBB algorithm (solid black) against vanilla versions of EAGO (dashed blue) and SCIP (dotted
purple) and vanilla EAGO using the same lower-bounding routine as ParBB (dash-dotted green). The ParBB
algorithm shows the strongest performance out of any of the vanilla versions of more mature solvers, reaching
95% convergence in 0.88 s—roughly 24x faster than vanilla EAGO and roughly 90x faster than EAGO with the
blackbox sampling method. At the two-hour time limit, EAGO with the blackbox sampling method reached a
convergence of 96.9%, which was passed by ParBB in 61 s for a speedup of 118x. ParBB owes its performance
to its ability to offload expensive objective function calculations to the GPU, as well as its ability to access a
far greater number of nodes than traditional serial solvers.

5. Limitations

The new SCMC package, which can calculate pointwise evaluations of the interval ex-
tensions and convex and concave relaxations of math expressions in parallel on a GPU,
has been shown to be fast and useful for global optimization when used in the correct
conditions. However, it comes with several important limitations, some of which are
briefly mentioned throughout this paper and many of which are the targets of ongo-
ing research efforts. The most impactful of these limitations, which will likely require
significant effort to overcome, are summarized in the following.

e Due to the large number of floating-point operations required to calculate
McCormick-based relaxations, it is highly recommended to use double-precision
floating-point numbers, including numbers on GPUs. Since most GPUs are de-
signed for single-precision floating-point operation, forcing double-precision will
often result in a significant performance hit. GPUs designed for scientific com-
puting, with a higher proportion of double-precision-capable cores, are recom-
mended to obtain the best double-precision floating-point performance for use
with SCMC.

e Due to the high branching factor for calculating McCormick-based relaxations
and the possibility of warp divergence, there will likely be a performance gap
between optimization problems with variables covering positive-only domains
and variables with mixed domains. Additionally, more complicated expressions

32

where the structure of a McCormick relaxation changes more frequently with
respect to the bounds on its domain will likely perform worse than problems
where the structure of the relaxation is more consistent. Some of this performance
gap could be fixed by more intelligent ordering of B&B nodes prior to passing
calculations to the GPU, but more research is needed to investigate whether the
sorting process would result in a net loss or gain of speed.

In addition to these more challenging obstacles, there are several more manageable
limitations that we will seek to address in future work, summarized in the following.

e SCMC does yet not calculate subgradients of relaxations, which are used in many
modern global optimizers. Although it would be possible to implement subgra-
dient calculations in a similar fashion as described in this article, additional
advances would be needed to make use of the subgradients in a performant
way, such as by creating a GPU-based LP solver that can solve batches of LPs
simultaneously. With developments such as this, including subgradients would
allow for tighter relaxations for each node, which could increase the number of
nodes fathomed in each iteration and thereby ease the memory burden of the
parallelized B&B algorithm.

e Complicated expressions may cause significant compilation time if passed
through SCMC at one time, which can currently be avoided by manually fac-
toring expressions into a few intermediate expressions and combining the results
together in a user-defined function. Automating this process with further source
code generation capabilities will simplify the use and implementation of SCMC.

e Due to limitations in CUDA, functions created with SCMC may only accept 32
CUDA arrays as inputs. Thus, functions with more than 8 unique variables
will need to be split/factored by the user, similar to how complex expressions
are handled, in order to be accommodated. As with the expression complexity
limitation, an automated factorization and function generation process would be
able to overcome this hurdle by ensuring that the number of inputs for any given
intermediate function does not exceed the 32-input limit.

e The current version of SCMC is compatible with the elementary arithmetic op-
erations +, -, *, /, and the univariate intrinsic functions "2 and exp. Although
this library covers a very broad set of nonconvex optimization problems of in-
terest to researchers and practitioners, it represents a very small fraction of the
exhaustive library of McCormick. j1 used by EAGO. Continued development to
include additional functions will allow a more diverse set of functions to be used
with the parallelized B&B algorithm.

While these listed issues will all positively impact the utility of SCMC for deterministic
global optimization applications, they were not viewed as fundamental requirements
to disseminate the novel methods and software. Instead, they function as near-term
attainable targets for future research.

6. Conclusions and future prospects
A new method of calculating McCormick relaxations was developed that is built on a
SCT approach inspired by forward-mode AD and implemented as the software package

SourceCodeMcCormick. j1 in the Julia language. This approach enables the parallel
evaluation of an arbitrarily large number of interval bounds and convex/concave re-

33

laxation points, each on potentially different domains, on a GPU. A deterministic
global optimization algorithm was created that makes use of this new approach to
solve lower- and upper-bounding problems for a large number of B&B nodes simul-
taneously. The performance benefits of this new algorithm were demonstrated using
GPU parallelization on three challenging nonconvex global optimization problems rel-
evant to researchers and practitioners in the physical sciences and engineering. Future
improvements to the SourceCodeMcCormick. j1 package are underway, including the
incorporation of subgradients, which promise to greatly enhance the utility of this
approach within deterministic global optimization software.

Acknowledgements

The authors would like to thank Dr. Matt Wilhelm for his fruitful discussions on Julia,
EAGO, and McCormick-based relaxation libraries.

Data availability

The software library SourceCodeMcCormick.jl is available in a GitHub repository:
https://github.com/PSORLab/SourceCodeMcCormick. j1

Disclosure statement

The authors report there are no competing interests to declare.

Funding

Funding is provided in part by the National Alliance for Water Innovation (NAWT)
funded by the U.S. Department of Energy (DOE), Office of Energy Efficiency and
Renewable Energy (EERE), Advanced Manufacturing Office (AMO), under Funding
Opportunity Announcement Number DE-FOA-0001905, the DOE EERE AMO under
Funding Opportunity Announcement Number DE-FOA-0002336, and by the National
Science Foundation under Grant No. 1932723. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation, NAWI, or the
Department of Energy.

References

[1] M.E. Alvarez, M. Bourouis, and X. Esteve, Vapor-liquid equilibrium of aqueous alkaline
nitrate and nitrite solutions for absorption refrigeration cycles with high-temperature driv-
ing heat, Journal of Chemical & Engineering Data 56 (2011), pp. 491-496.

[2] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, and J.M. Siskind, Automatic differentiation
in machine learning: a survey, Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey An-
dreyevich Radul, Jeffrey Mark Siskind. Automatic differentiation in machine learning: a
survey. The Journal of Machine Learning Research, 18(153):1-43, 2018 (2015).

34

https://github.com/PSORLab/SourceCodeMcCormick.jl

3]

[20]
[21]

[22]

D.E. Bernal, C.D. Laird, S.M. Harwood, D. Trenev, and D. Venturelli, Impact of emerging
computing architectures and opportunities for process systems engineering applications, in
FOCAPO-CPC 2023, Jan., San Antonio, TX. 2023.

D.E. Bernal Neira, C.D. Laird, L.R. Lueg, S.M. Harwood, D. Trenev, and D. Venturelli,
Utilizing modern computer architectures to solve mathematical optimization problems: A
survey, Computers & Chemical Engineering 184 (2024), p. 108627.

T. Besard, C. Foket, and B. De Sutter, Effective extensible programming: Unleashing Julia
on GPUs, IEEE Transactions on Parallel and Distributed Systems (2018).

C. Bischof and H. Bucker, Computing derivatives of computer programs, NIC Series 3
(2000).

S. Bolusani, M. Besangon, K. Bestuzheva, A. Chmiela, J. Dionisio, T. Donkiewicz, J. van
Doornmalen, L. Eifler, M. Ghannam, A. Gleixner, C. Graczyk, K. Halbig, I. Hedtke,
A. Hoen, C. Hojny, R. van der Hulst, D. Kamp, T. Koch, K. Kofler, J. Lentz, J. Manns,
G. Mexi, E. Mithmer, M.E. Pfetsch, F. Schlésser, F. Serrano, Y. Shinano, M. Turner,
S. Vigerske, D. Weninger, and L. Xu, The SCIP Optimization Suite 9.0, Technical re-
port, Optimization Online (2024), URL https://optimization-online.org/2024/02/
the-scip-optimization-suite-9-0/.

D. Bongartz, J. Najman, S. Sass, and A. Mitsos, MAINGO - McCormick-based
Algorithm for mized-integer Nonlinear Global Optimization, Tech. rep., RWTH-
Aachen (2018), URL https://www.avt.rwth-aachen.de/global/show_document .asp?
id=aaaaaaaaabclahw.

B. Chachuat, B. Houska, R. Paulen, N. Peri'c, J. Rajyaguru, and M.E. Villanueva,
Set-theoretic approaches in analysis, estimation and control of nonlinear systems, IFAC-
PapersOnLine 48 (2015), pp. 981-995.

J. Chen and J. Revels, Robust benchmarking in noisy environments, arXiv e-prints (2016),
arXiv:1608.04295.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shel-
hamer, cuDNN: Efficient primitives for deep learning (2014).

K. Du and R.B. Kearfott, The cluster problem in multivariate global optimization, Journal
of Global Optimization 5 (1994), pp. 253-265.

I. Dunning, J. Huchette, and M. Lubin, JuMP: A modeling language for mathematical
optimization, SIAM Review 59 (2017), pp. 295-320.

J. Forrest, T. Ralphs, S. Vigerske, H.G. Santos, J. Forrest, L. Hafer, B. Kristjansson,
jpfasano, EdwinStraver, M. Lubin, Jan-Willem, rlougee, jpgoncall, S. Brito, h-i gassmann,
Cristina, M. Saltzman, tosttost, B. Pitrus, F. MATSUSHIMA, and to st, coin-or/cbe:
Release releases/2.10.11 (2023).

M. Garland, S.L.. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, and V. Volkov, Parallel computing experiences with CUDA, IEEE Micro 28
(2008), pp. 13-27.

R.X. Gottlieb and M.D. Stuber, Global dynamic optimization using hardware-accelerated
programming, in AIChE Annual Meeting 2022, Nov., Phoenix, AZ. 2022.

R.X. Gottlieb and M.D. Stuber, PSORLab/Source CodeMcCormick.jl (2023), URL https:
//github.com/PSORLab/SourceCodeMcCormick. jl.

R.X. Gottlieb, P. Xu, and M.D. Stuber, Automatic source code generation of complicated
models for deterministic global optimization with parallel architectures, in FOCAPO-CPC
2023, Jan., San Antonio, TX. 2023.

S. Gowda, Y. Ma, A. Cheli, M. Gw6zdz, V.B. Shah, A. Edelman, and C. Rackauckas, High-
performance symbolic-numerics via multiple dispatch, ACM Communications in Computer
Algebra 55 (2021), pp. 92-96.

A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differen-
tiation, no. 19 in Frontiers in Appl. Math., STAM, Philadelphia, PA, 2000.

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Springer Berlin
Heidelberg, 2013 Nov., URL https://books.google.com/books?id=Pe_1CAAAQBAJ.
G.K. Kenway, C.A. Mader, P. He, and J.R. Martins, Effective adjoint approaches for

35

https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://www.avt.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabclahw
https://www.avt.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabclahw
https://github.com/PSORLab/SourceCodeMcCormick.jl
https://github.com/PSORLab/SourceCodeMcCormick.jl
https://books.google.com/books?id=Pe_1CAAAQBAJ

[23]

[24]

[31]

[32]
[33]

[34]

[37]
[38]
[39]
[40]
[41]

[42]

[43]

computational fluid dynamics, Progress in Aerospace Sciences 110 (2019), p. 100542.
K.A. Khan, H.A.J. Watson, and P.I. Barton, Differentiable McCormick relazations, Jour-
nal of Global Optimization 67 (2016), pp. 687-729.

K.A. Khan, M. Wilhelm, M.D. Stuber, H. Cao, H.A.J. Watson, and P.I. Barton, Correc-
tions to: Differentiable McCormick relazations, Journal of Global Optimization 70 (2018),
pp- 705-706.

T. Koch, T. Berthold, J. Pedersen, and C. Vanaret, Progress in mathematical programming
solvers from 2001 to 2020, EURO Journal on Computational Optimization 10 (2022), p.
100031.

A. Krizhevsky, Cuda-convnet (2014), URL code.google.com/p/cuda-convnet/.

D. Luebke, CUDA: Scalable parallel programming for high-performance scientific comput-
ing, in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, May. IEEE, 2008.

D. Maclaurin, D. Duvenaud, and R. Adams, Gradient-based hyperparameter optimization
through reversible learning, in F. Bach and D. Blei (eds.), Proceedings of the 32nd In-
ternational Conference on Machine Learning Proceedings of Machine Learning Research
vol. 37, Proceedings of Machine Learning Research vol. 37, 0709 Jul, Lille, France. PMLR,
2015, pp. 2113-2122, URL https://proceedings.mlr.press/v37/maclaurinl5.html.
A. Makhorin, Gipk (gnu linear programming kit), http://www.gnu.org/s/glpk/glpk.html
(2008).

G.P. McCormick, Computability of global solutions to factorable nonconvex programs:
Part I — convex underestimating problems, Mathematical Programming 10 (1976), pp.
147-175.

R. Misener and C.A. Floudas, ANTIGONE: Algorithms for coNTinuous / Integer Global
Optimization of Nonlinear Equations, Journal of Global Optimization 59 (2014), pp. 503~
526.

A. Mitsos, B. Chachuat, and P.I. Barton, McCormick-based relazations of algorithms,
STAM Journal on Optimization 20 (2009), pp. 573-601.

R.E. Moore, Methods and Applications of Interval Analysis, Society for Industrial and
Applied Mathematics, 1979 Jan.

W.S. Moses, V. Churavy, L. Paehler, J. Hiickelheim, S.H.K. Narayanan, M. Schanen, and
J. Doerfert, Reverse-mode automatic differentiation and optimization of gpu kernels via
enzyme, in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov. ACM, SC 21, 2021.

A. Neumaier, Complete search in continuous global optimization and constraint satisfac-
tion, Acta Numerica 13 (2004), pp. 271-369.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, Automatic differentiation in pytorch, in NIPS 2017 Workshop
on Autodiff. 2017, URL https://openreview.net/forum?id=BJJsrmfCZ.

D. Reed, D. Gannon, and J. Dongarra, HPC forecast: Cloudy and uncertain, Communi-
cations of the ACM 66 (2023), pp. 82-90.

N.V. Sahinidis, BARON: A general purpose global optimization software package, Journal
of Global Optimization 8 (1996), pp. 201-205.

J.K. Scott, M.D. Stuber, and P.I. Barton, Generalized McCormick relaxations, Journal of
Global Optimization 51 (2011), pp. 569-606.

A.B. Singer, Global dynamic optimization, Ph.D. diss., Massachusetts Institute of Tech-
nology (2004).

E.M. Smith and C.C. Pantelides, Global optimisation of nonconvex MINLPs, Computers
& Chemical Engineering 21 (1997), pp. S791-S796.

J.D. Smith, A.A. Neto, S. Cremaschi, and D.W. Crunkleton, Cfd-based optimization of a
flooded bed algae bioreactor, Industrial & Engineering Chemistry Research 52 (2012), pp.
7181-7188.

Y. Song, H. Cao, C. Mehta, and K.A. Khan, Bounding convexr relaxations of process
models from below by tractable black-box sampling, Computers & Chemical Engineering

36

code.google.com/p/cuda-convnet/
https://proceedings.mlr.press/v37/maclaurin15.html
https://openreview.net/forum?id=BJJsrmfCZ

[44]

[45]

[46]
[47]
[48]

[49]

[51]

[52]

153 (2021), p. 107413.

M.D. Stuber, J.K. Scott, and P.I. Barton, Convex and concave relaxations of implicit
functions, Optimization Methods and Software 30 (2015), pp. 424-460.

M. Tawarmalani and N. Sahinidis, Convezification and Global Optimization in Continu-
ous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Ap-
plications, Nonconvex Optimization and Its Applications, Springer, 2002, URL https:
//books.google.com/books?id=MjueCVdGZfoC.

M. Tawarmalani and N.V. Sahinidis, Convezification and Global Optimization in Contin-
wous and Mized-Integer Nonlinear Programming, Springer US, 2002.

M. Tawarmalani and N.V. Sahinidis, A polyhedral branch-and-cut approach to global op-
timization, Mathematical Programming 103 (2005), pp. 225-249.

J.W. Taylor, Direct measurement and analysis of cyclohexadienyl oxidation, Ph.D. diss.,
Massachusetts Institute of Technology (2005).

Theano Development Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bah-
danau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Berg-
eron, J. Bergstra, V. Bisson, J.B. Snyder, N. Bouchard, N. Boulanger-Lewandowski,
X. Bouthillier, A. de Brébisson, O. Breuleux, P.L. Carrier, K. Cho, J. Chorowski, P. Chris-
tiano, T. Cooijmans, M.A. Cété, M. Coté, A. Courville, Y.N. Dauphin, O. Delalleau,
J. Demouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Dumoulin, S.E. Kahou,
D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham, C. Gul-
cehre, P. Hamel, 1. Harlouchet, J.P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean, K. Jia,
M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee, S. Lefran-
cois, S. Lemieux, N. Léonard, Z. Lin, J.A. Livezey, C. Lorenz, J. Lowin, Q. Ma, P.A. Man-
zagol, O. Mastropietro, R.T. McGibbon, R. Memisevic, B. van Merriénboer, V. Michalski,
M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rock-
lin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard, J. Schliiter, J. Schulman,
G. Schwartz, I.V. Serban, D. Serdyuk, S. Shabanian, Etienne Simon, S. Spieckermann,
S.R. Subramanyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian, S. Urban, P. Vin-
cent, F. Visin, H. de Vries, D. Warde-Farley, D.J. Webb, M. Willson, K. Xu, L. Xue,
L. Yao, S. Zhang, and Y. Zhang, Theano: A python framework for fast computation of
mathematical expressions (2016).

B. van Merrienboer, D. Moldovan, and A. Wiltschko, Tangent: Automatic differentiation
using source-code transformation for dynamically typed array programming, in S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems vol. 31, vol. 31. Curran Associates,
Inc., 2018, URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
748d6b6ed8e13£857ceaabcfbdcal4b8-Paper.pdf.

B. van Merriénboer, A.B. Wiltschko, and D. Moldovan, Tangent: Automatic differentia-
tion using source code transformation in python, arXiv preprint arXiv:1711.02712 (2017).
S. Vigerske and A. Gleixner, SCIP: global optimization of mixed-integer nonlinear pro-
grams in a branch-and-cut framework, Optimization Methods and Software 33 (2018), pp.
563-593.

A. Wichter and L.T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Mathematical Programming 106 (2006),
pp. 25-57.

A. Wechsung, S.D. Schaber, and P.I. Barton, The cluster problem revisited, Journal of
Global Optimization 58 (2014), pp. 429-438.

A. Wechsung, J.K. Scott, H.A.J. Watson, and P.I. Barton, Reverse propagation of Mc-
Cormick relazations, Journal of Global Optimization 63 (2015), pp. 1-36.

M.J. White, Nwvidia says falling GPU prices are ’a story of the past’
Digital ~ Trends (2022), URL https://www.digitaltrends.com/computing/
nvidia-says-falling-gpu-prices-are-over/.

M.E. Wilhelm, R.X. Gottlieb, and M.D. Stuber, PSORLab/McCormick.jl (2020), URL
https://github.com/PSORLab/McCormick. jl.

37

https://books.google.com/books?id=MjueCVdGZfoC
https://books.google.com/books?id=MjueCVdGZfoC
https://proceedings.neurips.cc/paper_files/paper/2018/file/748d6b6ed8e13f857ceaa6cfbdca14b8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/748d6b6ed8e13f857ceaa6cfbdca14b8-Paper.pdf
https://www.digitaltrends.com/computing/nvidia-says-falling-gpu-prices-are-over/
https://www.digitaltrends.com/computing/nvidia-says-falling-gpu-prices-are-over/
https://github.com/PSORLab/McCormick.jl

[68] M.E. Wilhelm, A.V. Le, and M.D. Stuber, Global optimization of stiff dynamical systems,
AIChE Journal 65 (2019).

[59] ML.E. Wilhelm and M.D. Stuber, EAGO.jl: easy advanced global optimization in Julia,
Optimization Methods and Software 37 (2022), pp. 425-450.

[60] Y. Yajima, Convex envelopes in optimization problems, in Encyclopedia of Optimization,
Springer US (2001), pp. 343-344.

[61] J. Ye and J.K. Scott, Extended McCormick relazation rules for handling empty arguments
representing infeasibility, Journal of Global Optimization 87 (2023), pp. 57-95.

38

	Introduction and motivation
	Mathematical background
	Interval arithmetic
	Convex and concave relaxations
	McCormick relaxations
	Spatial branch-and-bound

	Software development
	Factorization and computational graph generation
	Source code generation
	Utilities
	GPU compatibility
	Global optimization with SourceCodeMcCormick.jl

	Numerical examples
	Surrogate ANN model
	Vapor pressure parameter estimation
	Transient absorption kinetics model

	Limitations
	Conclusions and future prospects

